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Motivation: Equilibrium Problems in Geochemistry

Precipitation-dissolution reactions in geochemistry

O _ ion of a mineral
T p: concentration of a mineral,
@l c: concentration of aqueous
‘ components.
0 Action-Mass Law
b - 2 possibles states (solid or liquid):
®
Précipitation Q p=0, Kp —(c) >0

‘ﬁ Q@ p>0, K, —v(c) =0;
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Motivation: The Complementarity Problem (CP)

Consider the following set of constraints:

C={(a,b) eRIxRY|0<alb>0}

b

© In general, a = G(x) and b = H(x) with two maps
G,H:R" —» R¢Y,

@ Even in the "most simple" case with G and H affine the
problem of finding a "feasible" point in C is NP-hard in
general.
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Motivation: Non-linear Programming

Consider a non-linear program with an objective function
f :R” — R and constraints g : R” — RP, h: R"” — R™ so that

min £(x) st. g(x) <0, h(x) = 0. (NLP)
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min £(x) st. g(x) <0, h(x) = 0. (NLP)

For any "qualified" local minimum (x*) of (NLP), there exists a
Lagrange multiplier X := (A8, A") such that

—VF(x Z)\ng, ) + Z)\”Vh

h(x)zO, Og—g(x)J_)\gZO.

(KKT)
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min £(x) st. g(x) <0, h(x) = 0. (NLP)

For any "qualified" local minimum (x*) of (NLP), there exists a
Lagrange multiplier X := (A8, A") such that

—Vf(x Z)\ng, ) + Z)\”Vh

h(x)zO, Og—g(x)J_)\gZO.

(KKT)

Application of CP

The KKT conditions form a complementarity problem
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Motivation: Bilevel Programming

In many applications the scientist/engineer/leader has to optimize
depending on the answer of other people (= another optimization
problem in the constraints).

min  fo(x
x,y ERM0 xR™ (%)

st. go(x,y) <0, ho(x,y) =0, (BP)
y € S(x),

where

5(x) = argmin{fi(x,y) s.a. g1(y) <0, m(y) =0}
yeR™M
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st. go(x,y) <0, ho(x,y) =0, (BP)
y € S(x),

where

5(x) = argmin{fi(x,y) s.a. g1(y) <0, m(y) =0}
yeR™M

Optimistic Bilevel Program

Replace S(x) by its optimality conditions, we optimize a function
over a complementarity set. We call the resulting problem a
Mathematical Program with Complementarity Constraints.
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The Complementarity Set

Consider the following set of constraints:

C={(ab)eRIxRI|0<alb>0l.

Gx)

@ non-convex domain with "kink";

@ in general, a = G(x) and b = H(x) with two maps
G,H :R" — RY -> non-connected domain;

© thin domain (i.e. Ax* € R", G(x*) > 0, H(x*) > 0).
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The Complementarity Set

Consider the following set of constraints:

C={(ab)eRIxRI|0<alb>0l.

Gx)

@ non-convex domain with "kink";

@ in general, a = G(x) and b = H(x) with two maps
G,H :R" — RY -> non-connected domain;

© thin domain (i.e. Ax* € R", G(x*) > 0, H(x*) > 0).

Natural idea:
regularization or relaxation of the domain.
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The 0 Regularization

The 0’'s function

For a regularization parameter r > 0, we consider for x € R

0r(x) = l|xlo,

where for z € R", ||z]|o := #{z # 0}.
In this case, the complementarity can be "approximated" with

al bro.(a)+0,(b) <1
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The 0 Regularization

Given r > 0. Let 0, : R —] — 00, 1] be a smooth (C? or C1),
non-decreasing, concave function such that

o er(o) =0;
Q lim 0,(x)=1;
X400

© 0,(x) <0 forx <O.
These properties yields to

lim 0, (x) = {1, if x>0,

r—0+ 0, otherwise.
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The 0 Regularization
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Examples for x > 0

X

o (x) = and 02(x) =1 — exp(—é)

X+r
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Our aim is to derive fast and efficient algorithms, so our classical
framework is composed of:

@ continuously differentiable data;

@ computation of stationary point (or at best local optima).
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@ Introduction/Motivation

© Sparse Optimization

© Complementarity Problems - Absolute Value Equations

@ Mathematical Programs with Complementarity Constraints

© Conclusion and Perspectives
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© Sparse Optimization
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The Problem of Sparse Optimization

Find x € R” the sparsest solution over a polyhedron P:
i . P
min x[o (Po)

0#P={xeR" beR™ Ax < b} NR] (many results are valid
for a convex set P C R").

Many popular applications

Compressed sensing, image recovery,...
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A General Family of Concave Functions

We consider for r > 0 the following problem
min Z 0r(xi) = min O,(x).

cP
XSS

© Concave optimization problem;
@ By definition of 6,, it holds

im © = :
Tim ©,(x) = Ixll

© Existence of solution, whenever P C R’ is non-empty,
convex and closed, results from asymptotic analysis.
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An Homotopy Method

min b/l = min®,(x) — min]ix|l
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An Homotopy Method
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: & min® S omi
min[[x|[1 — min©(x) — min|lxlo
We get an homotopy technique that should improve the classical

convex approximation.

(P1) — (Pr)

Taylor theorem in one dimension and 6,(x) := 6(x/r) yields to

0(x/r) = ’-;9'(0) +o(x/r).
As r > 0, we can use a scaling technique

min O,(x) — min rO,(x).




A Sufficient Convergence Condition

o k =||x*||lo < n be the (unknown) optimal value of problem
(Po);

° SIT-HO the set of solutions of (Pp);

° x, €5/;

@ 0 functions where 6 > 61;

Theorem (Exact Penalization, Haddou-Migot,15°)

k
i > — He
& ((err;:go(xr)l) ~ k41 = X € S||~||0

k [EI Ch
We can bound o1 by Teollo1" which is known.
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A Sufficient Convergence Condition

o k =||x*||lo < n be the (unknown) optimal value of problem
(Po);

° S|>||F~Ho the set of solutions of (Pp);

° x, €5/;

@ 0 functions where 6 > 61;

Theorem (Exact Penalization, Haddou-Migot,15°)

k
i > — He
& ((err;:go(xr)l) ~ k41 = X € S||~||0

k [EI Ch
We can bound o1 by Teollo1" which is known.

Numerics on random test problems

The 6 regularization manages to improve the solution provided by
the convex ¢; problem.
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© Complementarity Problems - Absolute Value Equations
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The Absolute Value Equation (AVE)

AVE consists in finding x € R” that verifies
Ax — |x| = b,

with A € R™" and b € R".
© Application: ODE with absolute values;

@ Difficulties in presence of degeneracy (some singular values of
A are 1). Mangasarian [2007 - 2014] proposes bilinear or
concave reformulations;

© Reformulation with complementarity constraints of the
absolute value:

x| =xtT+x7, 0<xT Lx >0=x=x" —x".
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0 Regularization of AVE

min. O,(xT) +0,(x7)

st. JA(xT —x7) = (xT +x7) = b| < g(r)(|A] + e,
xT > 0, x>0,
xT+x7 > g(r),

where r = o(g(r)) (for instance g(r) = r® with 0 < a < 1).

The constraint x* + x~ > g(r) avoid a compensation phenomenon
in the objective function.
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0 Regularization of AVE: Theory

@ Algorithm: Homotopy technique for {r} with r — 07;

18/42



0 Regularization of AVE: Theory

@ Algorithm: Homotopy technique for {r} with r — 07;
@ Error bound:

Theorem (Abdallah-Haddou-Migot, 18’)

Let {x"",x"~} = (xT,x7). Then,

ds;,, o (<" = x7) = O(g(r)).

where dg(*AVE) denotes the distance (2-norm) to the set of solutions.
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6 Regularization of AVE: Numerics

We compare 4 methods tailored for general AVE:
e TAVE method (0 regularization using SLA);
@ TAVE2 which is the same algorithm with the different objective

D00 +6:067) = 6:(x" +x7);
P

@ concave minimization method CMM from [Mangasarian, 07°];

@ successive linear programming method LPM from
[Mangasarian, 14'].
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6 Regularization of AVE: Numerics

We compare 4 methods tailored for general AVE:
e TAVE method (0 regularization using SLA);
@ TAVE2 which is the same algorithm with the different objective

n
D 0:06") + 0, (x7) = 0 (6" +x);
i=1
@ concave minimization method CMM from [Mangasarian, 07°];

@ successive linear programming method LPM from
[Mangasarian, 14'].

Numerical results on random problems

TAVE significantly reduces the number of unsolved problems.
Perspectives: TAVE2 is doing even better.
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@ Mathematical Programs with Complementarity Constraints
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The Mathematical Program with Complementarity

Constraints (MPCC)

Let f, h,g, G, H be continuously differentiable maps.

i)
s.t. h(x) =0, g(x) <0, (MPCC)

0 < G(x)LH(x)>0,

MPCC

G(x)

Feasible set of 0 < G(x) L H(x) >0
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Major difficulty :
Classical CQs, fail to hold in general = no KKT.

min x2 + x3 — x3
x€R2

s.t. —4dx3 +x3 <0,
—4x0 +x3 <0,
0SX1J_X220

Obviously the point (0,0,0)7 is the global minimum. There exists
multipliers 81, \82, \¢ \H M\t = (1,0,—4,0,0) but none with the
correct signs regarding the KKT conditions.

N
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N

What is a stationary point in the MPCC sense 7
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MPCC-Lagrangian function of (MPCC) as

Luypcc(x,A) = f(x) —|—g(x)T)\g + h(x)T)\h — G(X)T)\G — H(X)T)\H,

0 .— {i| Gi(x) =0, H;(x) = 0},
0= {i| Gi(x) > 0, H;(x) = 0},
% = {i | Gi(x) =0, Hi(x) > 0}.

Definition
x* feasible for (MPCC) is said

o Weak-stationary if there exists
A= (A8, M1 NG AH) € RPHIT2M sch that

ViLmpce(x*, X8, A AC, AH) =0,
M >0, AZio =0, Moy =




Moreover, x* weak-stationary is said
o C.-stationary: A\°\H > 0;
o A.-stationary: A\ >0 or A > 0;
o M.-stationary: either A® >0, A\H > 0 or A° A = 0;
@ S.-stationary: )\,-G >0, )\,H > 0.
For all i € 7% := {i | Gi(x*) = H;(x*) = 0}.

C.-stat.

N

M.-stat. S.-stat.

Weak-stat.

A . -stat.
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Necessary Optimality Conditions for MPCC

Theorem (Flegel-Kanzow, 06')

A local minimum of (MPCC) that satisfies MPCC-GCQ or any
stronger MPCC-CQ is an M-stationary point.

o A classical KKT-point is an S-starionary point.
e We will not get into the details of MPCC-CQs here.
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Necessary Optimality Conditions for MPCC

Theorem (Flegel-Kanzow, 06')

A local minimum of (MPCC) that satisfies MPCC-GCQ or any
stronger MPCC-CQ is an M-stationary point.

o A classical KKT-point is an S-starionary point.
e We will not get into the details of MPCC-CQs here.

Goal/Motivation :
@ Numerical methods should converge to M-stationary points
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Relax the Constraint : 0 < G(x) L H(x) >0

e +: Improved regularity (= satisfy a CQ)
e —: Convergence properties 7

it ()

st h(x) =0, g(x) <0,
G(x) > —t, H(x) > —t,
d(G(x),H(x);t) <0.

(Relax; 7)

t,t are positive parameters.
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Generic Regularization Algorithm

Data: x° an initial point, (tp, ) initial parameters, o, € (0,1)
parameters update;

Set k :=0, (tk,fk) = (to,fo) ;

repeat
(tis1s tey1) = o (b, te);
x¥*1 .= stationary point of (Relax; 7) with x¥ initial point;
k:=k+1;

until x*1 is "M-stationary of MPCC";

S R W N -
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Relax the constraint: 0 < G(x) L H(x) >0

e +: Improved regularity (= satisfy a CQ)

e —: Convergence properties ?

Relaxation methods that converge to C-stationary points (t | 0):

(tt)

H(x)

(t,t)

H(x)

G(x)

0,(G 0.(H <1 :
or(Stff)l(c))l)t;: 25)0(5)2)1 oL Steffensen-Ulbrich, 2010.
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A Unified Framework for Regularization Methods

Assume that the relaxation map ®(G(x), H(x); t) (C') is of the
form

®(G(x),H(x); t) =0 < F(G(x),H(x); t)Fu(G(x),H(x); t) = 0,
where

Fe(G(x), H(x): t) = G(x) = ¢(H(x); 1),
Fr(G(x), H(x):t) = H(x) — (G (x): t).
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A Unified Framework for Regularization Methods
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Assume that the relaxation map ®(G(x), H(x); t) (C') is of the
form

®(G(x),H(x); t) =0 < F(G(x),H(x); t)Fu(G(x),H(x); t) = 0,

where

Fe(G(x), H(x): t) = G(x) = ¢(H(x); 1),
Fr(G(x), H(x):t) = H(x) — (G (x): t).

Assumptions:
Q@ Ilim |[¥(z;t)]| =0VzeRY,;

lIt[|—0

Q@ Iim VG(X)(D = H(X) and lim VH(X)CD = G(X);

[lt]|—0 lIt]|—0
m 26| =0vzeRd
||t]|—0 x=z



Relax the Constraint: 0 < G(x) L

Regularization methods that belong to the Unified Framework:

H(x)
H(x)

G(x) GX)

. Dussault-Haddou- Asymmetric
Kadrani-Dussault- Kanzow- Migot,2016 regularization
Benchakroun,2009 Schwartz,2013 "Butterfly" method 1

. . ) = 10 P(z;t)" =t and
Wzt)=t teR  P(zit)=t, teR Y(zt) =iz h) 2
P P(z;t)* =0, teR
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Convergence Theorem

Q {te. tk} \\0;

@ {x¥, A} a sequence of stationary (KKT-) points of (Relax; z)
for all k € N with xk — x* ;

© Suitable MPCC-CQ ! holds at x*;

Theorem (Dussault-Haddou-Kadrani-Migot,17")

x* is an M-stationary point.

IMPCC-CRSC (or MPCC-CCP)

30/42



Numerical Comparison

@ A sensitivity analysis on several values of the parameters, 7
values for tg and 3 for oy;

@ MacMPEC is a collection of test problems from real-world
applications available in AMPL,

[§ Leyffer, Sven.
MacMPEC: AMPL collection of MPECs.
www.mcs.anl.gov/leyffer/MacMPEC, 2000.

@ Simulations with three solvers SNOPT, IPOPT and MINOS.
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Numerical Comparison

@ A sensitivity analysis on several values of the parameters, 7
values for tg and 3 for oy;

@ MacMPEC is a collection of test problems from real-world
applications available in AMPL,

[§ Leyffer, Sven.
MacMPEC: AMPL collection of MPECs.
www.mcs.anl.gov/leyffer/MacMPEC, 2000.

@ Simulations with three solvers SNOPT, IPOPT and MINOS.

The butterfly relaxation(s) give promising results.
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Classical Definition of e-Stationary Points

Practical implementation of the regularization method: at each
step we compute an e-stationary point and not an exact one.
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Classical Definition of e-Stationary Points

Practical implementation of the regularization method: at each
step we compute an e-stationary point and not an exact one.

Main problem : e-stationary sequences may converge to
weak-stationary points.

[3 Christian Kanzow and Alexandra Schwartz.
The Price of Inexactness: Convergence Properties of
Relaxation Methods for Mathematical Programs with
Complementarity Constraints Revisited.
Mathematics of Operations Research, 40(2):253-275, may
2015.
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Strong e-Stationary Points

A new definition of approximate stationary point, so called strong
epsilon-stationary point:

HVLR(X,Ag,Ah,AG,A”,A"’)HOO <e

with

[A(X)|loo < €k, &(x) < €k, A& >0, [|A8 0 g(x)]loo < ek,

G(x) + B > —eks A€ >0, [N 0 (6(x) + )l < i

HOX) + B> —es M 20, A7 0 (H) + Bl < e

O(G(xK), H(x); i) < e 0, A® >0, [A® 0 &(G(x¥), H(x¥); ti)loo < € O.
fr i
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Strong e-Convergence Theorem

O {ti, tk} \(O;

Q ¢ = o(t);

@ {x*, A} a sequence of strong ej-stationary (KKT-) points of
(Relax, ;) for all k € N with xk — x* ;

@ Suitable MPCC-CQ ! holds at x*;

Theorem (Dussault-Haddou-Kadrani-Migot,17°)

x* is an M-stationary point.

IMPCC-CRSC (or MPCC-CCP)
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Formulation with slack variables

min f(x)
xER" 56 ERY,syERY

st h(x) =0, g(x) <0,
G(x) = sg, H(x) = sp,
sg > —t, sy > —t,
®(sg,sy; t) <0.

Motivations of slack variables:

o Existence of strong e-stationary points in a neighbourhood of
an M-stationary point.

@ Algorithmic computation of strong e-stationary points.
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Regularized-Penalized Problem with Slack Variables

min  f(x) + /1) (]l max(g(x),0), h(x), G(x) — sg, H(x) — sHH%)

X,5G,SH
st sgc > —F sy > —F, (Slack _Pen_Relaxt)

¢(5G7 SH; t) < 07
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Active-Set-Penalization for (Relax; z)

36/42

© Project the initial point on the feasible set;

@ Let W(s; t, ) be the set of active constraints among the
constraints

SG Z _Ea SH Z _Ea ¢'(SG,SH; t) S 07

where ®(sg, sn;t) = (s6 — Y(swi t))(sH — U(sGi t));
© Minimize the unconstrained problem (Slack Pen Relax;)

e Compute the gradient in the working subspace using
composition rule of the derivative;

o Restricted step to remain feasible for the relaxed
complementarity constraints;

© Compute the Lagrange multipliers;
© Relax some of the active constraints (if needed);

@ Reduce penalization parameter p (if needed).



Quter lteration : Regularization Method for the MPCC

37/42

W N

Data: Let 2% = (x%,5%) be an initial point;

Choose a sequence of precision {ex} and a desired precision €;
Set k = 0;

Begin ;

repeat

(t,t):=Oracle(e) ;

Active-Set Algorithm : from the starting point z¥, use

k+1 an approximate stationary

Algorithm Inner to compute z
point of (Relax; 7);

Set k +— k+1;

6 until x*T1 is M-stationary of the MPCC up to €s;
7 [return: fo,; the optimal value at the solution X, or a decision of

infeasibility or unboundedness.




@ Recent high level dynamic programming
language (2012);

@ Sophisticated compilation with
performances close to C;

@ Designed for high performance numerical ® ...
analysis and computational science.
Already a lot of stuff available for optimization: Ju Ia
e JuMP (Modelling Language);

@ MathProgBase (Interface between models
and solvers);
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MacMPEC test problems

MacMPEC test problems (60 pbs) with the butterfly relaxation for
e=10"3

Esolve
feasible
unbounded

o fail
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MacMPEC test problems

MacMPEC test problems (60 pbs) with the butterfly relaxation for
e=10"3

Esolve
feasible
unbounded

o fail

1042 Tests using a "naive straightforward" application of the algorithm. I



© Conclusion and Perspectives
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Conclusions

We studied several regularization techniques for complementarity
(and related problems). Our aim was to:
O study a general framework of methods

e 0 functions for ¢ and CP
o unified framework (UF) for MPCC

@ recover the best-known theoretical properties
o M-stationarity for MPCC regularizations
© derive new theoretical results

e sufficient condition for £y
e error bounds for AVE
e convergence, existence of stationary points for the MPCC

@ overcome numerical difficulties

e strong e-stationary point
e active-set penalization regularization strategy for the MPCC
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© Performance:
e application to interior-point methods (Haddou, M., Migot, T.,
Omer, J. A new direction in IPMs, 2016)

e penalization of the merit function (TAVE2 for AVE — Abdallah,

L.,Haddou, M., Migot, T., A DC Subadditive Approach for
CP, 2017)

o solver in Julia for degenerate NLPs (including MPCCs)
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© Performance:
e application to interior-point methods (Haddou, M., Migot, T.,
Omer, J. A new direction in IPMs, 2016)
e penalization of the merit function (TAVE2 for AVE — Abdallah,

L.,Haddou, M., Migot, T., A DC Subadditive Approach for
CP, 2017)

o solver in Julia for degenerate NLPs (including MPCCs)
@ Extension:

e mathematical programs with vanishing constraints
e optimization models with cardinality constraints

© Application:

o bilevel programming

41/42



Thank you for your attention !
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Using this technique, we tackle difficult problems such as:
@ Sparse Optimization,

e Haddou, M., Migot, T., A Smoothing Method for Sparse
Optimization, Proceedings MCO, 2015.
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Using this technique, we tackle difficult problems such as:
@ Sparse Optimization,
e Haddou, M., Migot, T., A Smoothing Method for Sparse
Optimization, Proceedings MCO, 2015.
@ Complementarity Problems and related problems,
e Abdallah, L., Haddou, M., Migot, T., Solving AVE using
Complementarity and Smoothing Functions, JCAM, 2018.
© Mathematical Programs with Complementarity Constraints,

o Dussault, J.-P., Haddou, M., Migot, T., The New Butterfly
Relaxation for MPCC, optimization-online.org, 2016,

e Dussault, J.-P., Haddou, M., Kadrani, A., Migot, T., How to
Compute a Local Minimum of the MPCC,
optimization-online.org, 2017.
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Numerical results with random n X m matrix A

Successive Linearization Algorithm to solve the concave problem.

Compare a default sparse solution with 10% of non-zero components,
#1o, the initial iterate solution of (P), #h, and the solution by
f-algorithm with function 6%, #6*.

n mo #lo > #OT Hlho =l #O' < #h

1000 800 100 100 0
1000 600 100 98 2
1000 400 50 1 99
750 600 100 100 0
750 450 100 98 2
750 300 54 0 100
500 400 100 100 0
500 300 100 94 6

500 200 63 0 100
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6 Regularization of AVE: Numerics

@ 100 problems for each size;

e A from a uniform distribution on [—10, 10];
e x from a uniform distribution on [—1,1];

e b= Ax—|x|.

n CMM LPM TAVE TAVE2

32 9 7 0 0
64 8 13 3 2
128 10 13 8 4
256 11 11 8 4
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Comparison

A sensitivity analysis on several values of the parameters, 7 values
for tg and 3 for o;.

We take into account three criteria :
a) Feasibility of the last relaxed non-linear program:
max(—g(x), |h(x)|, —®(x)) < 107;
b) Feasibility of the complementarity constraint:
min(G(x), H(x)) < V1077,
(c) The complementarity between the Lagrange multipliers and
the constraints of the last relaxed non-linear program.
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MacMPEC Test Problems

MacMPEC is a collection of test problems from real-world
applications available in AMPL.

& Leyffer, Sven.
MacMPEC: AMPL collection of MPECs.
www.mcs.anl.gov/leyfier/MacMPEC, 2000.
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Comparison

We run the simulation with three different solvers IPOPT, MINOS
and SNOPT and present here the best.

Results using SNOPT to solve the non-linear programs:

101 pb

snopt NL SS KS B(t:r) B(s:t,2t:r) B(t=r3/2)
best | 92.1 | 94.1 | 94.1 | 96.0 93.1 95.0

average | 92.1 | 90.4 | 90.3 | 91.7 89.4 91.6
worst | 92.1 | 83.2 | 86.1 | 87.1 86.1 87.1

min: % worst set of parameter; average: average % of success; max: %
best set of parameter
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About the Butterfly Relaxation

Butterfly relaxation:
®(a, b t) =
(a — 0104, ())(b — 1104, (a)).

H(x)

G(x)

min —x; s.tx3 <1, 0<x3 L xp >0.
xER2

@ There are two stationary points: (1,0) S-stat. and (0,0)"
M-stat.;

o Relaxation KS and KDB: x* = (ty 4, 2t2 )T — (0,0)7;

@ There is no such sequence for the butterfly relaxation.
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Existence of strong epsilon-stationary point

O Let x* € Z be an M-stationary point;
@ ¢ > 0 arbitrarily small;

© Hypothesis on 1) (that encompass relaxations KS, Butterfly
and approximation KDB);

Theorem (Dussault-Haddou-Kadrani-Migot,17")

Then, there exists positive constants ¢, t* with t* > ce and a
neighbourhood U(x*) of (x*, G(x*), H(x*))T such that for all
t € (0,t*) and t € (0,t*) there exists (x,s)T € U(x*), which is
strong e-stationary point of the relaxation with slack variables.

Counter-example without slack variables. )
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Example: Step |

ne1]i1€2X12+X22—X3 stsg=x1, sHy=x,0<sg 1L sy>0,
X

—4x; +x3 <0, —4xo + x3 < 0.
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Example: Step |

r2]i1£12X12+X22—X3 stsg=x1, sHy=x,0<sg 1L sy>0,
X

—4x; +x3 <0, —4xo 4+ x3 < 0.

—— xk
—— sk
—— Butterfly

3.0
2.5
2.0
1.5 4
1.0 4

o] L‘/_‘—‘-.—-«

0.0 4
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Example: Step |l

r2]i1£12X12+X22—X3 stsg=x1, sHy=x,0<sg 1L sy>0,
X

—4x; +x3 <0, —4xo 4+ x3 < 0.

—— xk
1.04 —— sk
—— Butterfly
0.8
0.6 1
0.4
0.2
0.0 4
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Example: Step IlI

r2]i1£12X12+X22—X3 stsg=x1, sHy=x,0<sg 1L sy>0,
X

—4x +x3 <0, —4xo +x3 < 0.

1.0 —— xk
—— sk
—— Butterfly
0.8

0.6
0.4 4

0.2 4

.

T T T T T T T T
—=0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
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