
Contributions aux méthodes numériques pour les
problèmes de complémentarité et problèmes

d'optimisation sous contraintes de complémentarité

Tangi Migot

Soutenance de thèse - 06 octobre 2017

1/42



Motivation: Equilibrium Problems in Geochemistry

Precipitation-dissolution reactions in geochemistry

p: concentration of a mineral,
c: concentration of aqueous
components.

Action-Mass Law
2 possibles states (solid or liquid):

1 p = 0, Kp − γ(c) ≥ 0;

2 p ≥ 0, Kp − γ(c) = 0;
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Motivation: The Complementarity Problem (CP)

Consider the following set of constraints:

C = {(a, b) ∈ Rq × Rq | 0 ≤ a ⊥ b ≥ 0}.

1 In general, a ≡ G (x) and b ≡ H(x) with two maps
G ,H : Rn → Rq;

2 Even in the "most simple" case with G and H a�ne the
problem of �nding a "feasible" point in C is NP-hard in
general.
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Motivation: Non-linear Programming

Consider a non-linear program with an objective function
f : Rn → R and constraints g : Rn → Rp, h : Rn → Rm so that

min
x∈Rn

f (x) s.t. g(x) ≤ 0, h(x) = 0. (NLP)

For any "quali�ed" local minimum (x∗) of (NLP), there exists a
Lagrange multiplier λ := (λg , λh) such that

−∇f (x∗) =
m∑
i=1

λgi ∇gi (x
∗) +

p∑
i=1

λhi ∇hi (x∗),

h(x∗) = 0, 0 ≤ −g(x∗) ⊥ λg ≥ 0.

(KKT)

Application of CP

The KKT conditions form a complementarity problem.
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Motivation: Bilevel Programming

In many applications the scientist/engineer/leader has to optimize
depending on the answer of other people (= another optimization
problem in the constraints).

min
x ,y∈Rn0×Rn1

f0(x , y)

s.t. g0(x , y) ≤ 0, h0(x , y) = 0,

y ∈ S(x),

(BP)

where

S(x) = argmin
y∈Rn1

{f1(x , y) s.à. g1(y) ≤ 0, h1(y) = 0}.

Optimistic Bilevel Program

Replace S(x) by its optimality conditions, we optimize a function
over a complementarity set. We call the resulting problem a
Mathematical Program with Complementarity Constraints.
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The Complementarity Set

Consider the following set of constraints:

C = {(a, b) ∈ Rq × Rq | 0 ≤ a ⊥ b ≥ 0}.

1 non-convex domain with "kink";
2 in general, a ≡ G (x) and b ≡ H(x) with two maps

G ,H : Rn → Rq -> non-connected domain;
3 thin domain (i.e. @x∗ ∈ Rn, G (x∗) > 0,H(x∗) > 0).

Natural idea:

regularization or relaxation of the domain.
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The θ Regularization

The θ's function

For a regularization parameter r > 0, we consider for x ∈ R+

θr (x) ≈ ‖x‖0,

where for z ∈ Rn, ‖z‖0 := #{zi 6= 0}.

In this case, the complementarity can be "approximated" with

a ⊥ b ≈ θr (a) + θr (b) ≤ 1.
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The θ Regularization

Given r > 0. Let θr : R→]−∞, 1] be a smooth (C 2 or C 1),
non-decreasing, concave function such that

1 θr (0) = 0;

2 lim
x
r
→∞

θr (x) = 1;

3 θr (x) < 0 for x < 0.

These properties yields to

lim
r→0+

θr (x) =

{
1, if x > 0,

0, otherwise.
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The θ Regularization

Examples for x ≥ 0

θ1r (x) =
x

x + r
and θ2r (x) = 1− exp(−x

r
)
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Outline

Our aim is to derive fast and e�cient algorithms, so our classical
framework is composed of:

1 continuously di�erentiable data;

2 computation of stationary point (or at best local optima).
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The Problem of Sparse Optimization

Find x ∈ Rn the sparsest solution over a polyhedron P:

min
x∈P

‖x‖0. (P0)

∅ 6= P = {x ∈ Rn| b ∈ Rm, Ax ≤ b} ∩ Rn
+ (many results are valid

for a convex set P ⊂ Rn).

Many popular applications

Compressed sensing, image recovery,...

12/42



A General Family of Concave Functions

We consider for r > 0 the following problem

min
x∈P

n∑
i=1

θr (xi ) = min
x∈P

Θr (x).

1 Concave optimization problem;

2 By de�nition of θr , it holds

lim
r→0+

Θr (x) = ‖x‖0;

3 Existence of solution, whenever P ⊂ Rn
+ is non-empty,

convex and closed, results from asymptotic analysis.
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An Homotopy Method

min
x∈P
||x ||1 → min

x∈P
Θr (x) → min

x∈P
||x ||0

We get an homotopy technique that should improve the classical
convex approximation.

(P1)→ (Pr )

Taylor theorem in one dimension and θr (x) := θ(x/r) yields to

θ(x/r) =
x

r
θ′(0) + o(x/r).

As r > 0, we can use a scaling technique

min
x∈P

Θr (x) ⇐⇒ min
x∈P

rΘr (x).
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A Su�cient Convergence Condition

k = ||x∗||0 < n be the (unknown) optimal value of problem
(P0);

S∗||.||0 the set of solutions of (P0);

xr ∈ S∗r ;

θ functions where θ ≥ θ1;

Theorem (Exact Penalization, Haddou-Migot,15')

θr

(
min

(xr )i 6=0

(xr )i

)
≥ k

k + 1
=⇒ xr ∈ S∗||.||0 .

We can bound k
k+1

by ‖x0‖0
‖x0‖0+1

, which is known.

Numerics on random test problems

The θ regularization manages to improve the solution provided by
the convex `1 problem.
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The Absolute Value Equation (AVE)

AVE consists in �nding x ∈ Rn that veri�es

Ax − |x | = b,

with A ∈ Rn×n and b ∈ Rn.

1 Application: ODE with absolute values;

2 Di�culties in presence of degeneracy (some singular values of
A are 1). Mangasarian [2007 - 2014] proposes bilinear or
concave reformulations;

3 Reformulation with complementarity constraints of the
absolute value:

|x | = x+ + x−, 0 ≤ x+ ⊥ x− ≥ 0 =⇒ x = x+ − x−.
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θ Regularization of AVE

min
x+,x−

Θr (x
+) + Θr (x

−)

s.t. |A(x+ − x−)− (x+ + x−)− b| ≤ g(r)(|A|+ I )e,

x+ ≥ 0, x− ≥ 0,

x+ + x− ≥ g(r),

where r = o(g(r)) (for instance g(r) = rα with 0 < α < 1).

Remark

The constraint x+ + x− ≥ g(r) avoid a compensation phenomenon
in the objective function.
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θ Regularization of AVE: Theory

1 Algorithm: Homotopy technique for {r} with r → 0+;

2 Error bound:

Theorem (Abdallah-Haddou-Migot,18')

Let {x r+, x r−} → (x̄+, x̄−). Then,

dS∗
(AVE)

(x r+ − x r−) = O(g(r)),

where dS∗
(AVE)

denotes the distance (2-norm) to the set of solutions.
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θ Regularization of AVE: Numerics

We compare 4 methods tailored for general AVE:

TAVE method (θ regularization using SLA);

TAVE2 which is the same algorithm with the di�erent objective

n∑
i=1

θr (x
+
i ) + θr (x

−
i )− θr (x+

i + x−i );

concave minimization method CMM from [Mangasarian, 07'];

successive linear programming method LPM from
[Mangasarian, 14'].

Numerical results on random problems

TAVE signi�cantly reduces the number of unsolved problems.
Perspectives: TAVE2 is doing even better.
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The Mathematical Program with Complementarity
Constraints (MPCC)

Let f , h, g ,G ,H be continuously di�erentiable maps.

min
x∈Rn

f (x)

s.t. h(x) = 0, g(x) ≤ 0,

0 ≤ G (x) ⊥ H(x) ≥ 0,

(MPCC)

Feasible set of 0 ≤ G(x) ⊥ H(x) ≥ 0
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Major di�culty :

Classical CQs, fail to hold in general =⇒ no KKT.

Example

min
x∈R2

x21 + x22 − x3

s.t. − 4x1 + x3 ≤ 0,

− 4x2 + x3 ≤ 0,

0 ≤ x1 ⊥ x2 ≥ 0

Obviously the point (0, 0, 0)T is the global minimum. There exists

multipliers λg1 , λg2 , λG , λH , λ⊥ = (1, 0,−4, 0, 0) but none with the

correct signs regarding the KKT conditions.

What is a stationary point in the MPCC sense ?
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MPCC-Lagrangian function of (MPCC) as

LMPCC (x , λ) = f (x)+g(x)Tλg +h(x)Tλh−G (x)TλG −H(x)TλH ,

I00 := {i | Gi (x) = 0,Hi (x) = 0},
I+0 := {i | Gi (x) > 0,Hi (x) = 0},
I0+ := {i | Gi (x) = 0,Hi (x) > 0}.

De�nition

x∗ feasible for (MPCC) is said

Weak-stationary if there exists

λ = (λg , λh, λG , λH) ∈ Rp+q+2m such that

∇xLMPCC (x∗, λg , λh, λG , λH) = 0,

λgIg ≥ 0, λGI+0 = 0, λHI0+ = 0.
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Moreover, x∗ weak-stationary is said

C.-stationary: λGi λ
H
i ≥ 0;

A.-stationary: λGi ≥ 0 or λHi ≥ 0;

M.-stationary: either λGi > 0, λHi > 0 or λGi λ
H
i = 0;

S.-stationary: λGi ≥ 0, λHi ≥ 0.

For all i ∈ I00 := {i | Gi (x
∗) = Hi (x

∗) = 0}.

Weak-stat.

⇐=

⇐
=

C.-stat.

A.-stat.

⇐
=

⇐=

M.-stat.

⇐=

S.-stat.
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Necessary Optimality Conditions for MPCC

Theorem (Flegel-Kanzow, 06')

A local minimum of (MPCC) that satis�es MPCC-GCQ or any

stronger MPCC-CQ is an M-stationary point.

A classical KKT-point is an S-starionary point.

We will not get into the details of MPCC-CQs here.

Goal/Motivation :

Numerical methods should converge to M-stationary points
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Relax the Constraint : 0 ≤ G (x) ⊥ H(x) ≥ 0

+: Improved regularity (= satisfy a CQ)

-: Convergence properties ?

min
x∈Rn

f (x)

s.t h(x) = 0, g(x) ≤ 0,

G (x) ≥ −t̄, H(x) ≥ −t̄,
Φ(G (x),H(x); t) ≤ 0.

(Relaxt,t̄)

t, t̄ are positive parameters.

25/42



Generic Regularization Algorithm

Data: x0 an initial point, (t0, t̄0) initial parameters, σt ∈ (0, 1)
parameters update;

1 Set k := 0, (tk , t̄k) := (t0, t̄0) ;
2 repeat

3 (tk+1, t̄k+1) = σt(tk , t̄k);

4 xk+1 := stationary point of (Relaxt,t̄) with xk initial point;
5 k := k + 1;

6 until xk+1 is "M-stationary of MPCC";
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Relax the constraint: 0 ≤ G (x) ⊥ H(x) ≥ 0

+: Improved regularity (= satisfy a CQ)

-: Convergence properties ?

Relaxation methods that converge to C-stationary points (t ↓ 0):

θr (G (x)) + θr (H(x)) ≤ 1

or Scholtes, 2000 for θ1.
Ste�ensen-Ulbrich, 2010.
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A Uni�ed Framework for Regularization Methods

Assume that the relaxation map Φ(G (x),H(x); t) (C 1) is of the
form

Φ(G (x),H(x); t) = 0⇐⇒ FG (G (x),H(x); t)FH(G (x),H(x); t) = 0,

where

FG (G (x),H(x); t) = G (x)− ψ(H(x); t),

FH(G (x),H(x); t) = H(x)− ψ(G (x); t).

Assumptions:

1 lim
‖t‖→0

‖ψ(z ; t)‖ = 0 ∀z ∈ Rq;

2 lim
‖t‖→0

∇G(x)Φ = H(x) and lim
‖t‖→0

∇H(x)Φ = G (x);

3 lim
‖t‖→0

∂ψ(x ;t)
∂x

∣∣∣
x=z

= 0 ∀z ∈ Rq.
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Relax the Constraint: 0 ≤ G (x) ⊥ H(x) ≥ 0

Regularization methods that belong to the Uni�ed Framework:

Kadrani-Dussault-
Benchakroun,2009

ψ(z ; t) = t, t ∈ R

Kanzow-
Schwartz,2013

ψ(z ; t) = t, t ∈ R

Dussault-Haddou-
Migot,2016

"Butter�y" method
ψ(z ; t) = t2θ(z , t1),

t ∈ R2

Asymmetric
regularization

ψ(z ; t)1 = t and

ψ(z ; t)2 = 0, t ∈ R
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Convergence Theorem

1 {tk , t̄k} ↘ 0;

2 {xk , λk} a sequence of stationary (KKT-) points of (Relaxt,t̄)
for all k ∈ N with xk → x∗ ;

3 Suitable MPCC-CQ 1 holds at x∗;

Theorem (Dussault-Haddou-Kadrani-Migot,17')

x∗ is an M-stationary point.

1MPCC-CRSC (or MPCC-CCP)
30/42



Numerical Comparison

A sensitivity analysis on several values of the parameters, 7
values for t0 and 3 for σt ;

MacMPEC is a collection of test problems from real-world
applications available in AMPL,

Ley�er, Sven.
MacMPEC: AMPL collection of MPECs.
www.mcs.anl.gov/ley�er/MacMPEC, 2000.

Simulations with three solvers SNOPT, IPOPT and MINOS.

Results

The butter�y relaxation(s) give promising results.
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Classical De�nition of ε-Stationary Points

Remark

Practical implementation of the regularization method: at each
step we compute an ε-stationary point and not an exact one.

Main problem : ε-stationary sequences may converge to
weak-stationary points.

Christian Kanzow and Alexandra Schwartz.
The Price of Inexactness: Convergence Properties of
Relaxation Methods for Mathematical Programs with
Complementarity Constraints Revisited.
Mathematics of Operations Research, 40(2):253�275, may
2015.
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Strong ε-Stationary Points

A new de�nition of approximate stationary point, so called strong

epsilon-stationary point:∥∥∥∇LR(x , λg , λh, λG , λH , λΦ)
∥∥∥
∞
≤ εk

with

‖h(x)‖∞ ≤ εk , g(x) ≤ εk , λg ≥ 0, ‖λg ◦ g(x)‖∞ ≤ εk ,
G (x) + t̄k ≥ −εk , λG ≥ 0, ‖λG ◦ (G (x) + t̄k)‖∞ ≤ εk ,
H(x) + t̄k ≥ −εk , λH ≥ 0, ‖λH ◦ (H(x) + t̄k)‖∞ ≤ εk ,
Φ(G (xk),H(xk); tk) ≤ εk 0, λΦ ≥ 0, ‖λΦ ◦ Φ(G (xk),H(xk); tk)‖∞ ≤ εk 0.

⇑ ⇑

.
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Strong ε-Convergence Theorem

1 {tk , t̄k} ↘ 0;

2 εk = o(t̄k);

3 {xk , λk} a sequence of strong εk -stationary (KKT-) points of
(Relaxt,t̄) for all k ∈ N with xk → x∗ ;

4 Suitable MPCC-CQ 1 holds at x∗;

Theorem (Dussault-Haddou-Kadrani-Migot,17')

x∗ is an M-stationary point.

Question: Is it possible to design a method that computes strong
ε-stationary point ? Yes !

1MPCC-CRSC (or MPCC-CCP)
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ε-stationary point ?

Yes !

1MPCC-CRSC (or MPCC-CCP)
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Formulation with slack variables

min
x∈Rn,sG∈Rq ,sH∈Rq

f (x)

s.t h(x) = 0, g(x) ≤ 0,

G (x) = sG , H(x) = sH ,

sG ≥ −t̄, sH ≥ −t̄,
Φ(sG , sH ; t) ≤ 0.

Motivations of slack variables:

Existence of strong ε-stationary points in a neighbourhood of
an M-stationary point.

Algorithmic computation of strong ε-stationary points.
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Regularized-Penalized Problem with Slack Variables

min
x ,sG ,sH

f (x) +
1

ρ

(
‖max(g(x), 0), h(x),G (x)− sG ,H(x)− sH‖22

)
s.t. sG ≥ −t̄, sH ≥ −t̄,

Φ(sG , sH ; t) ≤ 0,

(Slack_Pen_Relaxt)
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Active-Set-Penalization for (Relaxt,t̄)

1 Project the initial point on the feasible set;

2 Let W(s; t, t̄) be the set of active constraints among the
constraints

sG ≥ −t̄, sH ≥ −t̄, Φ(sG , sH ; t) ≤ 0,

where Φ(sG , sH ; t) = (sG − ψ(sH ; t))(sH − ψ(sG ; t));
3 Minimize the unconstrained problem (Slack_Pen_Relaxt)

Compute the gradient in the working subspace using
composition rule of the derivative;
Restricted step to remain feasible for the relaxed
complementarity constraints;

4 Compute the Lagrange multipliers;

5 Relax some of the active constraints (if needed);

6 Reduce penalization parameter ρ (if needed).
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Outer Iteration : Regularization Method for the MPCC

Data: Let z0 = (x0, s0) be an initial point;
Choose a sequence of precision {εk} and a desired precision ε∞;
Set k = 0;

1 Begin ;
2 repeat

3 (t, t̄):=Oracle(εk) ;

4 Active-Set Algorithm : from the starting point zk , use

Algorithm Inner to compute zk+1 an approximate stationary
point of (Relaxt,t̄);

5 Set k ← k + 1;

6 until xk+1 is M-stationary of the MPCC up to ε∞;
7 return: fopt the optimal value at the solution xopt or a decision of
infeasibility or unboundedness.
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Julia

Recent high level dynamic programming
language (2012);

Sophisticated compilation with
performances close to C;

Designed for high performance numerical
analysis and computational science.

Already a lot of stu� available for optimization:

JuMP (Modelling Language);

MathProgBase (Interface between models
and solvers);

...
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MacMPEC test problems

MacMPEC test problems (60 pbs) with the butter�y relaxation for
ε = 10−3

Remark

Tests using a "naive straightforward" application of the algorithm.

39/42



MacMPEC test problems

MacMPEC test problems (60 pbs) with the butter�y relaxation for
ε = 10−3

Remark

Tests using a "naive straightforward" application of the algorithm.
39/42



Outline

1 Introduction/Motivation

2 Sparse Optimization

3 Complementarity Problems - Absolute Value Equations

4 Mathematical Programs with Complementarity Constraints

5 Conclusion and Perspectives

39/42



Conclusions

We studied several regularization techniques for complementarity
(and related problems). Our aim was to:

1 study a general framework of methods

θ functions for `0 and CP
uni�ed framework (UF) for MPCC

2 recover the best-known theoretical properties

M-stationarity for MPCC regularizations

3 derive new theoretical results

su�cient condition for `0
error bounds for AVE
convergence, existence of stationary points for the MPCC

4 overcome numerical di�culties

strong ε-stationary point
active-set penalization regularization strategy for the MPCC
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Perspectives

1 Performance:

application to interior-point methods (Haddou, M., Migot, T.,
Omer, J. A new direction in IPMs, 2016)
penalization of the merit function (TAVE2 for AVE � Abdallah,
L.,Haddou, M., Migot, T., A DC Subadditive Approach for

CP, 2017)
solver in Julia for degenerate NLPs (including MPCCs)

2 Extension:

mathematical programs with vanishing constraints
optimization models with cardinality constraints

3 Application:

bilevel programming
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Thank you for your attention !
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Outline

Using this technique, we tackle di�cult problems such as:
1 Sparse Optimization,

Haddou, M., Migot, T., A Smoothing Method for Sparse
Optimization, Proceedings MCO, 2015.

2 Complementarity Problems and related problems,

Abdallah, L., Haddou, M., Migot, T., Solving AVE using
Complementarity and Smoothing Functions, JCAM, 2018.

3 Mathematical Programs with Complementarity Constraints,

Dussault, J.-P., Haddou, M., Migot, T., The New Butter�y
Relaxation for MPCC, optimization-online.org, 2016,
Dussault, J.-P., Haddou, M., Kadrani, A., Migot, T., How to
Compute a Local Minimum of the MPCC,
optimization-online.org, 2017.
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Numerical results with random n ×m matrix A

Successive Linearization Algorithm to solve the concave problem.

Compare a default sparse solution with 10% of non-zero components,
#l0, the initial iterate solution of (P1), #l1, and the solution by
θ-algorithm with function θ1, #θ1.

n m #`0 ≥ #θ1 #`1 = #`0 #θ1 < #`1

1000 800 100 100 0
1000 600 100 98 2
1000 400 50 1 99
750 600 100 100 0
750 450 100 98 2
750 300 54 0 100
500 400 100 100 0
500 300 100 94 6
500 200 63 0 100

42/42



θ Regularization of AVE: Numerics

100 problems for each size;

A from a uniform distribution on [−10, 10];

x from a uniform distribution on [−1, 1];

b = Ax − |x |.

n CMM LPM TAVE TAVE2

32 9 7 0 0
64 8 13 3 2
128 10 13 8 4
256 11 11 8 4
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Comparison

A sensitivity analysis on several values of the parameters, 7 values
for t0 and 3 for σt .

We take into account three criteria :

a) Feasibility of the last relaxed non-linear program:
max(−g(x), |h(x)|,−Φ(x)) ≤ 10−7;

b) Feasibility of the complementarity constraint:
min(G (x),H(x)) ≤

√
10−7;

(c) The complementarity between the Lagrange multipliers and
the constraints of the last relaxed non-linear program.
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MacMPEC Test Problems

MacMPEC is a collection of test problems from real-world
applications available in AMPL.

Ley�er, Sven.
MacMPEC: AMPL collection of MPECs.
www.mcs.anl.gov/ley�er/MacMPEC, 2000.
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Comparison

We run the simulation with three di�erent solvers IPOPT, MINOS
and SNOPT and present here the best.

Results using SNOPT to solve the non-linear programs:

101 pb

snopt NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

best 92.1 94.1 94.1 96.0 93.1 95.0

average 92.1 90.4 90.3 91.7 89.4 91.6

worst 92.1 83.2 86.1 87.1 86.1 87.1

min: % worst set of parameter; average: average % of success; max: %
best set of parameter

.
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About the Butter�y Relaxation

Butter�y relaxation:
Φ(a, b; t) =
(a − t1θt2(b))(b − t1θt2(a)).

Example

min
x∈R2

−x1 s.t x1 ≤ 1, 0 ≤ x1 ⊥ x2 ≥ 0.

There are two stationary points: (1, 0)T S-stat. and (0, 0)T

M-stat.;

Relaxation KS and KDB: xk = (t2,k , 2t2,k)T → (0, 0)T ;

There is no such sequence for the butter�y relaxation.
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Existence of strong epsilon-stationary point

1 Let x∗ ∈ Z be an M-stationary point;

2 ε > 0 arbitrarily small;

3 Hypothesis on ψ (that encompass relaxations KS, Butter�y
and approximation KDB);

Theorem (Dussault-Haddou-Kadrani-Migot,17')

Then, there exists positive constants c, t̄∗ with t̄∗ > cε and a

neighbourhood U(x∗) of (x∗,G (x∗),H(x∗))T such that for all

t ∈ (0, t∗) and t̄ ∈ (0, t̄∗) there exists (x , s)T ∈ U(x∗), which is

strong ε-stationary point of the relaxation with slack variables.

Counter-example without slack variables.
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Example: Step I

min
x∈R2

x21 + x22 − x3 s.t sG = x1, sH = x2, 0 ≤ sG ⊥ sH ≥ 0,

− 4x1 + x3 ≤ 0, −4x2 + x3 ≤ 0.
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Example: Step II

min
x∈R2

x21 + x22 − x3 s.t sG = x1, sH = x2, 0 ≤ sG ⊥ sH ≥ 0,

− 4x1 + x3 ≤ 0, −4x2 + x3 ≤ 0.
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Example: Step III

min
x∈R2

x21 + x22 − x3 s.t sG = x1, sH = x2, 0 ≤ sG ⊥ sH ≥ 0,

− 4x1 + x3 ≤ 0, −4x2 + x3 ≤ 0.
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