▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Large Scale Optimization Solvers in Julia A tale of solving large-scale optimization problems with JuliaSmoothOptimizers

> Tangi Migot Polytechnique Montréal tangi.migot@gmail.com

joint work with D. Orban (Polytechnique) and A.S. Siqueira (Netherlands eScience Center)

Journées de l'Optimisation 2022, Montréal, May 17th

Introduction	Modeling	Solvers	Results	Conclusions
Outline				

Introduction	Modeling
--------------	----------

Introduction

Introduction Modeling Solvers Results Conclusions

Introduction: nonlinear optimization

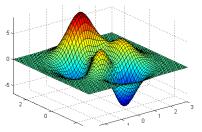
Variables: $x \in X$ (take \mathbb{R}^n); Cost: $f : X \to \mathbb{R}$; Constraints: $C \subseteq X$, for instance described by inequalities (in this case $C = \{x : g(x) \le 0\}$) with $g : X \to \mathbb{R}^m$.

We denote

$$\min_{x\in X} f(x) \text{ s.t. } x \in C.$$

Numerics?

Tools: Use derivatives (tradeoff efficiency/guarantee); **Aim:** Stationary points (local result).



Solvers

Example: 2D Poisson-Boltzmann problem

Example

A typical example is the control problem of a 2D Poisson-Boltzman equation:

$$\begin{cases} \min_{y \in H_0^1(\Omega), u \in L^2(\Omega)} \frac{1}{2} \int_{\Omega} |y - y_d(x)|^2 + \frac{1}{2} \alpha \int_{\Omega} |u|^2 dx, \\ \text{s.t.} \quad -\Delta y + \sinh y = h + u, \quad \text{in } \Omega := (-1, 1)^2, \\ y = 0, \quad \text{in } \partial\Omega, \end{cases}$$

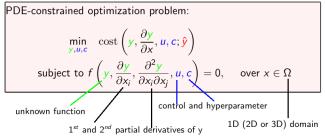
with the forcing term $h(x_1, x_2) = -\sin(\omega x_1)\sin(\omega x_2)$, $\omega = \pi - \frac{1}{8}$, and target state

$$y_d(x) = egin{cases} 10 & ext{if } x \in [0.25, 0.75]^2, \ 5 & ext{otherwise}. \end{cases}$$

Introduction Modeling Solvers Results Conclusions

Optimization over Partial Differential Equations

Hyperparameters in the model (u, c) can be refined by known data/measurements \hat{y}



Challenge: Design codes for PDE-constrained optimization

Introduction

Solvers

Results

Conclusions

PDE-constrained optimization: a Toolbox The environment

JuliaSmoothOptimizers

- a Github organization initiated in 2017 by D.Orban and A.Siqueira at Polytechnique Montréal
- Julia packages for linear algebra and continuous smooth optimization solvers

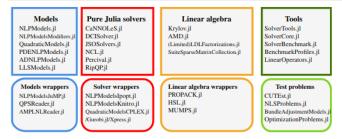


Fig. 2: Organization of the JSO packages in clusters.

Introduction	Modeling	Solvers	Results	Conclusions

Modeling

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Modeling	Solvers	Results	Conclusions

Model PDE-constrained optimization in Julia

$$\begin{cases} \min_{y \in H_0^1(\Omega), u \in L^2(\Omega)} \frac{1}{2} \int_{\Omega} |y - y_d(x)|^2 + \frac{1}{2} \alpha \int_{\Omega} |u|^2 dx, \\ \text{s.t.} \quad -\Delta y + \sinh y = h + u, \quad \text{in } \Omega := (-1, 1)^2, \\ y = 0, \quad \text{in } \partial\Omega, \end{cases}$$

We target a direct method that discretize the problem (domain/integral/partial derivatives) and convert it as a very large (but sparse and highly structured) nonlinear continuous optimization problem.

Challenge

Access a discretization of the domain and have the possibility to evaluate derivatives of the involved functions.

Introduction Modeling Solvers Results Conclusions
Finite-element methods

For PDEs, there are several ways to represent functions and derivatives as vectors:

- Finite difference methods: functions are represented on a grid, e.g., DiffEqOperators.jl, InfiniteOpt.jl or Trixi.jl.
- Finite volume methods: functions are represented by a discretization of its integral.
- Spectral methods: functions are represented by a global basis, e.g., FFTW.jl and ApproxFun.jl.
- Physics-informed neural networks: functions are represented by a neural networks, e.g., NeuralPDE.jl.
- Finite element methods: functions are represented by a local basis.

Introduction Modeling Solvers Results Conclusions
Finite-element methods

FE methods for discretization is a must for generic formulations.

- It is easy to increase the order of the elements or locally refine the mesh so that the physics fields can be approximated accurately.
- You can straightforwardly combine different kinds of approximation functions leading to mixed formulations.
- Finally, curved or irregular geometries of the domain are handled in a natural way.

The theory is much more difficult which explains the scarcity of implementations.

There exists a couple of packages for FE methods in Julia. The main are FEniCS.jl, Ferrite.jl, FinEtools.jl, JuliaFEM.jl, and Gridap.jl.

Gridap.jl for the FE discretization

We focus on the Gridap.jl as

- exclusively written in the Julia programming language
- supports a variety of different models, discretizations, and meshing possibilities
- has a very expressive API allowing to model complex PDEs with very few lines of code
- the user can write the underlying **weak form** with a syntax almost one-to-one to the mathematical notation.

Introduction	Modeling	Solvers	Results	Conclusions
using Grid	ар			

```
model = CartesianDiscreteModel((-1,1,-1,1), (n,n))
order = 2
reffe = ReferenceFE(lagrangian, Float64, order)
Xpde = TestFESpace(model, reffe; conformity = :H1, dirichlet tags = "boundary")
Ypde = TrialFESpace(Xpde, 0.0)
reffe_con = ReferenceFE(lagrangian, valuetype, 1)
Xcon = TestFESpace(model, reffe con; conformity = :H1)
Ycon = TrialFESpace(Xcon)
#Integration machinery: triangulation / degree
d\Omega = Measure(Triangulation(model), 1)
h(x) = -\sin((\pi - 1 / 8) * x[1]) * \sin((\pi - 1 / 8) * x[2])
\operatorname{res}(\mathbf{y}, \mathbf{u}, \mathbf{v}) = \int (\nabla(\mathbf{v}) \cdot \nabla(\mathbf{y}) + (\sinh \circ \mathbf{y}) * \mathbf{v} - \mathbf{u} * \mathbf{v} - \mathbf{v} * \mathbf{h}) * d\Omega
```

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

PDENLPModels.jl is a new Julia implementation for the modelization of optimization problems with a discretized partial differential equation (PDE) on Ω in the constraints of the form

$$\begin{array}{ll} \min_{y \in \mathcal{Y}, u \in \mathcal{U}, \theta \in \mathbb{R}^k} & \int_{\Omega} J(y, u, \theta) d\Omega \\ \text{s. t.} & c(y, u, \theta) = 0, \quad (\text{the governing PDE on } \Omega) \\ & l_{y, u} \leq (y, u) \leq u_{y, u}, \; (\text{functional bound constraints}) \\ & l_{\theta} \leq \theta \leq u_{\theta}, \; (\text{bound constraints}) \end{array}$$

 $J: \mathcal{Y} \times \mathcal{U} \times \mathbb{R}^k \to \mathbb{R}$ and $c: \mathcal{Y} \times \mathcal{U} \times \mathbb{R}^k \to \mathcal{C}$ are smooth mappings $(\mathcal{Y}, |\cdot|_{\mathcal{Y}}), (\mathcal{U}, |\cdot|_{\mathcal{U}})$, and $(\mathcal{C}, |\cdot|_{\mathcal{C}})$ are real Banach spaces. $I_{\theta}, u_{\theta} \in \mathbb{R}^k$ are bounds on the unknown θ , and $I_{y,u}, u_{y,u}$ are functional bounds $\Omega \to \mathcal{Y} \times \mathcal{U}$ on the unknown controls and states.

Introduction	Modeling	Solvers	Results	Conclusions
PDENLPMod	els.jl impleme	nts the NLF	PModel API	

The package's main function exports GridapPDENLPModel that uses Gridap.jl for the discretization of the functional space by finite elements.

#Objective function: yd(x) = min(x[1] - 0.25, 0.75 - x[1], x[2] - 0.25, 0.75 - x[2]) >= 0.0 ? 10.0 : 5.0 α = 1e-4 function f(y, u) ∫(0.5 * (yd - y) * (yd - y) + 0.5 * α * u * u) * dΩ end nlp = GridapPDENLPModel(xin, f, trian, Ypde, Ycon, Xpde, Xcon, op, name = "2D-Poisson Boltzman n=\$n")

Model

The resulting model is an instance of an AbstractNLPModel, defined in NLPModels.jl.

Introduction	Modeling	Solvers	Results	Conclusions
NI PMode	Is API			

One of the core packages in JSO is NLPModels.jl, which provides a standardized API for general models

$$\min_{x\in\mathbb{R}^n} f(x) \text{ s.t. } c_L \leq c(x) \leq c_U, \ \ell \leq x \leq u,$$

- provides access to objective and constraint functions
- in-place and out-of-place evaluation of the objective gradient, constraints, Jacobian and Hessian nonzero values
- a corresponding API dedicated to nonlinear least-squares models

Function	API			
f(x)	obj, objgrad, objcons			
$\nabla f(x)$ $\nabla^2 f(x)$	grad, objgrad			
$\nabla^2 f(x)$	hess, hess_op, hess_coord, hess_structure, hprod			
c(x)	cons, objcons			
$\nabla c(x)$	jac, jac_coord, jac_structure, jprod, jtprod, jac_op			
$\nabla^2 f(x) + \sum_{i=1}^m y_i \nabla^2 c_i(x)$	hess, hess_coord, hess_structure, hprod, hess_op			
	◆□ > ◆母 > ◆恵 >	< ≣ > □	÷.	うら

Introduction	Modeling	Solvers	Results	Conclusions

Solvers

Introduction

Solvers

Results

Conclusions

Solvers within JSO

Therefore, the package PDENLPModels.jl offers an interface between generic PDE-constrained optimization problems and cutting-edge optimization solvers such as:

- Artelys Knitro via NLPModelsKnitro.jl
- lpopt via NLPModelsIpopt.jl
- Algencan via NLPModelsAlgencan.jl

and JSO pure-Julia implementation such as

- Percival.jl (bounds + "=")
- DCISolver.jl ("=" only)
- FletcherPenaltyNLPSolver (bounds + "=")

and basically any solver accepting an AbstractNLPModel as input, see JuliaSmoothOptimizers (JSO).

Remark

These solvers are indepent of the origin of the problem!

Most of these solvers/algorithms rely on first and second-order derivatives either to:

- compute a factorization of a system involving jacobian/hessian matrices,
- or, compute jacobian/hessian-vector products.

The NLPModel API provides two ways to access second-order derivatives:

- Using COO-structure (vectors of rows, columns and values).
- Using linear operators (via LinearOperators.jl) to compute the matrix-vector products without storing the whole matrix.

Introduction Modeling Solvers Results Conclusions
Subproblem solvers

Most of these solvers/algorithms are iteratively solving subproblems of the form of simpler optimization problems (bound-constrained or unconstrained) or/and linear algebra systems (linear system, linear least squares, linear least-norm, ...).

- JSOSolvers.jl provides implementation of classical unconstrained/bound-constrained methods: lbfgs, tron, trunk (and their NLS versions);
- LDLFactorizations.jl and HSL.jl provide LDL factorization of sparse matrices.
- Krylov.jl contains over 30 implementation of iterative methods for various linear algebra systems (with GPU support).

Introduction	Modeling	Solvers	Results	Conclusions
DCISolver.jl				

Each DCI iteration is a two-step process.

- Tangential step: approximately minimizes a quadratic model subject to linearized constraints within a trust region.
- Normal step: recenters feasibility by way of a trust cylinder, which is the set of points such that ||h(x)|| ≤ ρ, where ρ > 0.

Each time the trust cylinder is violated during the tangential step, the normal step brings infeasibility back within prescribed limits. The radius ρ of the trust cylinder decreases with the iterations, so a feasible and optimal point results in the limit.

- Bielschowsky, R. H., & Gomes, F. A..

Dynamic control of infeasibility in equality constrained optimization,

SIAM Journal on Optimization, 19:3, pp. 1299-1325, 2008.

Introduction Modeling Solvers Results Conclusions

FletcherPenaltyNLPSolver

The method uses Fletcher's penalty function:

$$\min_{x\in\mathbb{R}^n}f(x)-c(x)^T y_{\sigma}(x)$$

where

$$y_{\sigma}(x) \in \arg\min_{y} \frac{1}{2} \| \nabla c(x)^{T} y - \nabla f(x) \|_{2}^{2} + \sigma c(x)^{T} y$$

Fun facts (1/2):

- This function is also smooth under classical assumptions
- The penalty function is exact, i.e. local minimizers are minimizers of the penalty function for σ sufficiently large.
- Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. . Implementing a smooth exact penalty function for equality-constrained nonlinear optimization, *SIAM Journal on Scientific Computing*, 42:3, pp. A1809-A1835, 2020.

Introduction Modeling Solvers Results Conclusions
FletcherPenaltyNLPSolver

The method uses Fletcher's penalty function:

$$\min_{x\in\mathbb{R}^n}f(x)-c(x)^Ty_{\sigma}(x)$$

where

$$y_{\sigma}(x) \in \arg\min_{y} \frac{1}{2} \|\nabla c(x)^{T}y - \nabla f(x)\|_{2}^{2} + \sigma c(x)^{T}y$$

Fun facts (2/2):

- Evaluating the penalty function and its derivatives is the solution of a certain saddle-point system.
- If the system matrix is available explicitly, we can factorize it once and reuse the factors to evaluate the derivatives.

くしゃ 本理 キャイボ キャー ほう うらう

• The penalty function can also be adapted to be factorization-free by solving the linear system iteratively.

Introduction	Modeling	Solvers	Results	Conclusions
Percival.jl				

- It is an implementation by Egmara Antunes dos Santos and Abel Soares Siqueira of a **matrix-free** augmented Lagrangian method.
- The method is designed for equality constraints and bounds.
- It uses an pure Julia implementation of tron to solve the bound-constrained subproblem.

 S. Arreckx, A. Lambe, Martins, J. R. R. A., & Orban, D.. A Matrix-Free Augmented Lagrangian Algorithm with Application to Large-Scale Structural Design Optimization., *Optimization And Engineering*, 17, pp. 359384, 2016.

Introduction	Modeling	Solvers	Results	Conclusions

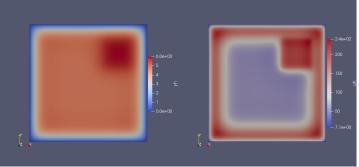
Results

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Solve our 2D Poisson-Boltzmann problem

https://juliasmoothoptimizers.github.io/PDENLPModels. jl/dev/poisson-boltzman/

Using Paraview we can print the vtk file obtained in Julia:



 Introduction
 Modeling
 Solvers
 Results
 Conclusion

 Distributed Poisson control problem with Dirichlet
 boundary conditions
 Conclusion
 Conclusion

https://jso-docs.github.io/ solve-pdenlpmodels-with-jsosolvers/ https://tmigot.github.io/FletcherPenaltyNLPSolver/ dev/example/

We present the result of a benchmark of equality-constrained CUTEst problems with a maximum of 10000 variables and constraints (82 problems). We compare DCISolver (using LDLFactorizations.jl for the tangential step), Ipopt, and Knitro with $max_time = 20min$ and $tol = 10^{-5}$

https://juliasmoothoptimizers.github.io/DCISolver.jl/
dev/benchmark/

Benchmark CUTEst: DCI-IdI vs Knitro

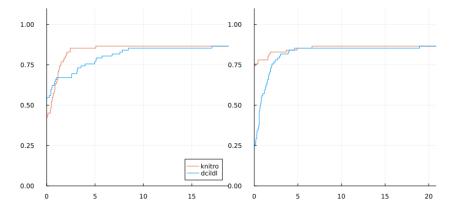


Figure : On the right with respect to time, and on the left with respect to number of evaluations of f + c.

Benchmark CUTEst: DCI-IdI vs Ipopt

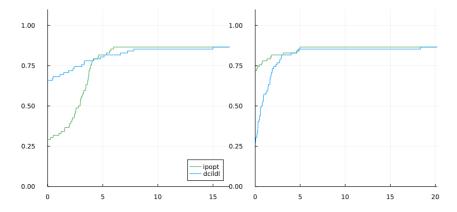


Figure : On the right with respect to time, and on the left with respect to number of evaluations of f + c.

Introc	luction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusions

PDE-constrained optimizer: a Toolbox

PDENLPModels.jl 📥

Model the optimization problem and pre-process it as a (very large)

continuous optimization problem.

use Gridap.jl (S. Badia & F. Verdusco, 2020) for the discretization of the PDE with finite-elements.

Solvers 📥

JSO-interface to well-established solvers *Knitro* and *Ipopt*

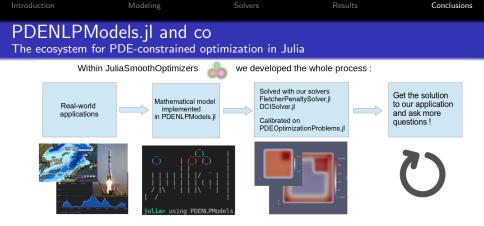
Homemade solvers in pure Julia:

DCISolver.jl

- FletcherPenaltyNLPSolver.jl (matrix-free !)
- Percival.jl (matrix-free !)

PDEOptimizationProblems.jl 📥

Our collection of test problems and applications



Perspectives:

- Maintain and improve this new ecosystem
- Handle more complex models (for instance bilevel programs)

• Tackle different applications

Thank you for your attention!

What I have used today

- CUTEst.jl : access the CUTEst test set in NLPModel format.
- NLPModelsModifiers.jl: to transform inequalities into bound constraints in one line via SlackModel.
- OptimizationProblems.jl: collection of test problems in JuMP and ADNLPModels format. (ps: great for 1st contribution!)
- SolverBenchmark.jl: run benchmark, generate performance profile and Latex tables.
- Stopping.jl: handle stopping criterion in your algorithms.