
Introduction Modeling Solvers Results Conclusions

Large Scale Optimization Solvers in Julia
A tale of solving large-scale optimization problems with

JuliaSmoothOptimizers

Tangi Migot
Polytechnique Montréal

tangi.migot@gmail.com

joint work with D. Orban (Polytechnique)

and A.S. Siqueira (Netherlands eScience Center)

Journées de l’Optimisation 2022, Montréal, May 17th

Introduction Modeling Solvers Results Conclusions

Outline

1 Introduction

2 Modeling

3 Solvers

4 Results

5 Conclusions

Introduction Modeling Solvers Results Conclusions

Introduction

Introduction Modeling Solvers Results Conclusions

Introduction: nonlinear optimization

Variables: x ∈ X (take Rn);

Cost: f : X → R;

Constraints: C ⊆ X , for instance described by inequalities (in
this case C = {x : g(x) ≤ 0}) with g : X → Rm.

We denote
min
x∈X

f (x) s.t. x ∈ C .

Numerics?

Tools: Use derivatives (tradeoff
efficiency/guarantee);
Aim: Stationary points (local
result).

Introduction Modeling Solvers Results Conclusions

Example: 2D Poisson-Boltzmann problem

Example

A typical example is the control problem of a 2D Poisson-Boltzman
equation:

min
y∈H1

0 (Ω),u∈L2(Ω)

1

2

∫
Ω
|y − yd(x)|2 +

1

2
α

∫
Ω
|u|2dx ,

s.t. −∆y + sinh y = h + u, in Ω := (−1, 1)2,

y = 0, in ∂Ω,

with the forcing term h(x1, x2) = − sin(ωx1) sin(ωx2), ω = π − 1
8 ,

and target state

yd(x) =

{
10 if x ∈ [0.25, 0.75]2,

5 otherwise.

Introduction Modeling Solvers Results Conclusions

Optimization over Partial Differential Equations

Hyperparameters in the model (u, c) can be refined by known
data/measurements ŷ

Challenge: Design codes for PDE-constrained optimization

Introduction Modeling Solvers Results Conclusions

PDE-constrained optimization: a Toolbox
The environment

JuliaSmoothOptimizers :

a Github organization initiated in 2017 by D.Orban and
A.Siqueira at Polytechnique Montréal

Julia packages for linear algebra and continuous smooth
optimization solvers

Introduction Modeling Solvers Results Conclusions

Modeling

Introduction Modeling Solvers Results Conclusions

Model PDE-constrained optimization in Julia

min

y∈H1
0 (Ω),u∈L2(Ω)

1

2

∫
Ω
|y − yd(x)|2 +

1

2
α

∫
Ω
|u|2dx ,

s.t. −∆y + sinh y = h + u, in Ω := (−1, 1)2,

y = 0, in ∂Ω,

We target a direct method that discretize the problem
(domain/integral/partial derivatives) and convert it as a very large
(but sparse and highly structured) nonlinear continuous
optimization problem.

Challenge

Access a discretization of the domain and have the possibility to
evaluate derivatives of the involved functions.

Introduction Modeling Solvers Results Conclusions

Finite-element methods

For PDEs, there are several ways to represent functions and
derivatives as vectors:

Finite difference methods: functions are represented on a grid,
e.g., DiffEqOperators.jl, InfiniteOpt.jl or Trixi.jl.

Finite volume methods: functions are represented by a
discretization of its integral.

Spectral methods: functions are represented by a global basis,
e.g., FFTW.jl and ApproxFun.jl.

Physics-informed neural networks: functions are represented
by a neural networks, e.g., NeuralPDE.jl.

Finite element methods: functions are represented by a
local basis.

Introduction Modeling Solvers Results Conclusions

Finite-element methods

FE methods for discretization is a must for generic formulations.

It is easy to increase the order of the elements or locally refine
the mesh so that the physics fields can be approximated
accurately.

You can straightforwardly combine different kinds of
approximation functions leading to mixed formulations.

Finally, curved or irregular geometries of the domain are
handled in a natural way.

The theory is much more difficult which explains the scarcity of
implementations.
There exists a couple of packages for FE methods in Julia. The
main are FEniCS.jl, Ferrite.jl, FinEtools.jl, JuliaFEM.jl,
and Gridap.jl.

Introduction Modeling Solvers Results Conclusions

Gridap.jl for the FE discretization

We focus on the Gridap.jl as

exclusively written in the Julia programming language

supports a variety of different models, discretizations, and
meshing possibilities

has a very expressive API allowing to model complex PDEs
with very few lines of code

the user can write the underlying weak form with a syntax
almost one-to-one to the mathematical notation.

Introduction Modeling Solvers Results Conclusions

Introduction Modeling Solvers Results Conclusions

PDENLPModels.jl

PDENLPModels.jl is a new Julia implementation for the
modelization of optimization problems with a discretized partial
differential equation (PDE) on Ω in the constraints of the form

min
y∈Y,u∈U ,θ∈Rk

∫
Ω J(y , u, θ)dΩ

s. t. c(y , u, θ) = 0, (the governing PDE on Ω)
ly ,u ≤ (y , u) ≤ uy ,u, (functional bound constraints)
lθ ≤ θ ≤ uθ, (bound constraints)

J : Y ×U ×Rk → R and c : Y ×U ×Rk → C are smooth mappings
(Y, | · |Y), (U , | · |U), and (C, | · |C) are real Banach spaces.
lθ, uθ ∈ Rk are bounds on the unknown θ, and ly ,u, uy ,u are
functional bounds Ω→ Y ×U on the unknown controls and states.

Introduction Modeling Solvers Results Conclusions

PDENLPModels.jl implements the NLPModel API

The package’s main function exports GridapPDENLPModel that
uses Gridap.jl for the discretization of the functional space by
finite elements.

Model

The resulting model is an instance of an AbstractNLPModel,
defined in NLPModels.jl.

Introduction Modeling Solvers Results Conclusions

NLPModels API

One of the core packages in JSO is NLPModels.jl, which provides
a standardized API for general models

min
x∈Rn

f (x) s.t. cL ≤ c(x) ≤ cU , ` ≤ x ≤ u,

provides access to objective and constraint functions

in-place and out-of-place evaluation of the objective gradient,
constraints, Jacobian and Hessian nonzero values

a corresponding API dedicated to nonlinear least-squares
models

Introduction Modeling Solvers Results Conclusions

Solvers

Introduction Modeling Solvers Results Conclusions

Solvers within JSO

Therefore, the package PDENLPModels.jl offers an interface
between generic PDE-constrained optimization problems and
cutting-edge optimization solvers such as:

Artelys Knitro via NLPModelsKnitro.jl

Ipopt via NLPModelsIpopt.jl

Algencan via NLPModelsAlgencan.jl

and JSO pure-Julia implementation such as

Percival.jl (bounds + ”=”)

DCISolver.jl (”=” only)

FletcherPenaltyNLPSolver (bounds + ”=”)

and basically any solver accepting an AbstractNLPModel as input,
see JuliaSmoothOptimizers (JSO).

Remark

These solvers are indepent of the origin of the problem!

Introduction Modeling Solvers Results Conclusions

Access derivatives

Most of these solvers/algorithms rely on first and second-order
derivatives either to:

compute a factorization of a system involving
jacobian/hessian matrices,

or, compute jacobian/hessian-vector products.

The NLPModel API provides two ways to access second-order
derivatives:

Using COO-structure (vectors of rows, columns and values).

Using linear operators (via LinearOperators.jl) to compute
the matrix-vector products without storing the whole matrix.

Introduction Modeling Solvers Results Conclusions

Subproblem solvers

Most of these solvers/algorithms are iteratively solving
subproblems of the form of simpler optimization problems
(bound-constrained or unconstrained) or/and linear algebra
systems (linear system, linear least squares, linear least-norm, ...).

JSOSolvers.jl provides implementation of classical
unconstrained/bound-constrained methods: lbfgs, tron, trunk
(and their NLS versions);

LDLFactorizations.jl and HSL.jl provide LDL
factorization of sparse matrices.

Krylov.jl contains over 30 implementation of iterative
methods for various linear algebra systems (with GPU
support).

Introduction Modeling Solvers Results Conclusions

DCISolver.jl

Each DCI iteration is a two-step process.

Tangential step: approximately minimizes a quadratic model
subject to linearized constraints within a trust region.

Normal step: recenters feasibility by way of a trust cylinder,
which is the set of points such that ‖h(x)‖ ≤ ρ, where ρ > 0.

Each time the trust cylinder is violated during the tangential step,
the normal step brings infeasibility back within prescribed limits.
The radius ρ of the trust cylinder decreases with the iterations, so
a feasible and optimal point results in the limit.

Bielschowsky, R. H., & Gomes, F. A..
Dynamic control of infeasibility in equality constrained
optimization,
SIAM Journal on Optimization, 19:3, pp. 1299-1325, 2008.

Introduction Modeling Solvers Results Conclusions

FletcherPenaltyNLPSolver

The method uses Fletcher’s penalty function:

min
x∈Rn

f (x)− c(x)T yσ(x)

where

yσ(x) ∈ arg min
y

1

2
‖∇c(x)T y −∇f (x)‖2

2 + σc(x)T y

Fun facts (1/2):

This function is also smooth under classical assumptions

The penalty function is exact, i.e. local minimizers are
minimizers of the penalty function for σ sufficiently large.

Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. .
Implementing a smooth exact penalty function for
equality-constrained nonlinear optimization,
SIAM Journal on Scientific Computing, 42:3, pp.
A1809-A1835, 2020.

Introduction Modeling Solvers Results Conclusions

FletcherPenaltyNLPSolver

The method uses Fletcher’s penalty function:

min
x∈Rn

f (x)− c(x)T yσ(x)

where

yσ(x) ∈ arg min
y

1

2
‖∇c(x)T y −∇f (x)‖2

2 + σc(x)T y

Fun facts (2/2):

Evaluating the penalty function and its derivatives is the
solution of a certain saddle-point system.

If the system matrix is available explicitly, we can factorize it
once and reuse the factors to evaluate the derivatives.

The penalty function can also be adapted to be
factorization-free by solving the linear system iteratively.

Introduction Modeling Solvers Results Conclusions

Percival.jl

It is an implementation by Egmara Antunes dos Santos and
Abel Soares Siqueira of a matrix-free augmented Lagrangian
method.

The method is designed for equality constraints and bounds.

It uses an pure Julia implementation of tron to solve the
bound-constrained subproblem.

S. Arreckx, A. Lambe, Martins, J. R. R. A., & Orban, D..
A Matrix-Free Augmented Lagrangian Algorithm with
Application to Large-Scale Structural Design Optimization.,
Optimization And Engineering, 17, pp. 359384, 2016.

Introduction Modeling Solvers Results Conclusions

Results

Introduction Modeling Solvers Results Conclusions

Solve our 2D Poisson-Boltzmann problem

https://juliasmoothoptimizers.github.io/PDENLPModels.

jl/dev/poisson-boltzman/

Using Paraview we can print the vtk file obtained in Julia:

https://juliasmoothoptimizers.github.io/PDENLPModels.jl/dev/poisson-boltzman/
https://juliasmoothoptimizers.github.io/PDENLPModels.jl/dev/poisson-boltzman/

Introduction Modeling Solvers Results Conclusions

Distributed Poisson control problem with Dirichlet
boundary conditions

https://jso-docs.github.io/

solve-pdenlpmodels-with-jsosolvers/

https://tmigot.github.io/FletcherPenaltyNLPSolver/

dev/example/

https://jso-docs.github.io/solve-pdenlpmodels-with-jsosolvers/
https://jso-docs.github.io/solve-pdenlpmodels-with-jsosolvers/
https://tmigot.github.io/FletcherPenaltyNLPSolver/dev/example/
https://tmigot.github.io/FletcherPenaltyNLPSolver/dev/example/

Introduction Modeling Solvers Results Conclusions

Benchmark CUTEst

We present the result of a benchmark of equality-constrained
CUTEst problems with a maximum of 10000 variables and
constraints (82 problems).
We compare DCISolver (using LDLFactorizations.jl for the
tangential step), Ipopt, and Knitro with max time = 20min and
tol = 10−5

https://juliasmoothoptimizers.github.io/DCISolver.jl/

dev/benchmark/

https://juliasmoothoptimizers.github.io/DCISolver.jl/dev/benchmark/
https://juliasmoothoptimizers.github.io/DCISolver.jl/dev/benchmark/

Introduction Modeling Solvers Results Conclusions

Benchmark CUTEst: DCI-ldl vs Knitro

Figure : On the right with respect to time, and on the left with respect
to number of evaluations of f + c .

Introduction Modeling Solvers Results Conclusions

Benchmark CUTEst: DCI-ldl vs Ipopt

Figure : On the right with respect to time, and on the left with respect
to number of evaluations of f + c .

Introduction Modeling Solvers Results Conclusions

Conclusions

Introduction Modeling Solvers Results Conclusions

PDE-constrained optimizer: a Toolbox

PDENLPModels.jl
Model the optimization problem and pre-process it as a (very large)

continuous optimization problem.

use Gridap.jl (S. Badia & F. Verdusco, 2020) for the discretization of the PDE with finite-elements.

Solvers
JSO-interface to well-established solvers Knitro and Ipopt

Homemade solvers in pure Julia:

DCISolver.jl

FletcherPenaltyNLPSolver.jl (matrix-free !)

Percival.jl (matrix-free !)

PDEOptimizationProblems.jl
Our collection of test problems and applications

Introduction Modeling Solvers Results Conclusions

PDENLPModels.jl and co
The ecosystem for PDE-constrained optimization in Julia

Perspectives:

Maintain and improve this new ecosystem

Handle more complex models (for instance bilevel programs)

Tackle different applications

Introduction Modeling Solvers Results Conclusions

Thank you for your attention!

What I have used today

CUTEst.jl : access the CUTEst test set in NLPModel format.

NLPModelsModifiers.jl: to transform inequalities into bound
constraints in one line via SlackModel.

OptimizationProblems.jl: collection of test problems in JuMP
and ADNLPModels format. (ps: great for 1st contribution!)

SolverBenchmark.jl: run benchmark, generate performance
profile and Latex tables.

Stopping.jl: handle stopping criterion in your algorithms.

	Introduction
	Modeling
	Solvers
	Results
	Conclusions

