using NLPModelsIpopt, ADNLPModels, TimerNLPModels
nlp = TimerNLPModel(ADNLPModel(x -> sum(x.^2), ones(3)))
stats = ipopt(nlp, print_level = 0)
"Execution stats: first-order stationary"
get_timer(nlp)
────────────────────────────────────────────────────────────────────────────
Time Allocations
─────────────────────── ────────────────────────
Tot / % measured: 3.39s / 50.4% 527MiB / 40.3%
Section ncalls time %tot avg alloc %tot avg
────────────────────────────────────────────────────────────────────────────
hess_coord! 1 998ms 58.3% 998ms 109MiB 51.1% 109MiB
grad! 3 584ms 34.2% 195ms 94.2MiB 44.3% 31.4MiB
obj 2 81.5ms 4.8% 40.8ms 8.33MiB 3.9% 4.17MiB
hess_structure! 1 46.3ms 2.7% 46.3ms 1.41MiB 0.7% 1.41MiB
────────────────────────────────────────────────────────────────────────────
using NLPModelsIpopt, ADNLPModels, TimerNLPModels
nls = TimerNLPModel(ADNLSModel(x -> x, ones(3), 3))
stats = ipopt(nls, print_level = 0)
"Execution stats: first-order stationary"
get_timer(nls)
────────────────────────────────────────────────────────────────────────────
Time Allocations
─────────────────────── ────────────────────────
Tot / % measured: 2.28s / 74.8% 225MiB / 68.1%
Section ncalls time %tot avg alloc %tot avg
────────────────────────────────────────────────────────────────────────────
hess_coord! 1 1.12s 66.0% 1.12s 86.8MiB 56.7% 86.8MiB
grad! 3 543ms 31.9% 181ms 64.9MiB 42.4% 21.6MiB
hess_structure! 1 35.4ms 2.1% 35.4ms 1.34MiB 0.9% 1.34MiB
obj 2 19.5μs 0.0% 9.76μs 224B 0.0% 112B
────────────────────────────────────────────────────────────────────────────