Benchmark on dense random symmetric positive definite matrices

using RandomLinearAlgebraSolvers, Random, LinearAlgebra, SparseArrays
Random.seed!(1234)
MersenneTwister(1234)

Benchmark of methods to solve Ax = b with A an n x n randomly generated symmetric positive definite matrix, and b = A * xref.

using DataFrames, Printf, SolverBenchmark, Stopping
N = 5 # number of problems
n = 100 # size of A: n x n
100

Names of solvers:

names = [:RandomizedKaczmarz, :RandomizedBlockKaczmarz, :RandomizedCD, :RandomizedCD2, :RandomizedNewton]
5-element Vector{Symbol}:
 :RandomizedKaczmarz
 :RandomizedBlockKaczmarz
 :RandomizedCD
 :RandomizedCD2
 :RandomizedNewton
#Initialization of the DataFrame for n problems.
stats = Dict(name => DataFrame(
         :id     => 1:N,
         :nvar   => zeros(Int64, N),
         :status => [:Unknown for i = 1:N],
         :time   => NaN*ones(N),
         :iter   => zeros(Int64, N),
         :score  => NaN*ones(N)) for name in names)
Dict{Symbol, DataFrames.DataFrame} with 5 entries:
  :RandomizedBlockKaczmarz => 5×6 DataFrame…
  :RandomizedCD            => 5×6 DataFrame…
  :RandomizedCD2           => 5×6 DataFrame…
  :RandomizedKaczmarz      => 5×6 DataFrame…
  :RandomizedNewton        => 5×6 DataFrame…
for i=1:N

  Ar = rand(n,n); A = 1/sqrt(n) * Ar'*Ar + Matrix{Float64}(I, n, n)
  xref = 100 * rand(n)
  b = A * xref

  x0 = zeros(size(A,2))
  la_stop = RLAStopping(A, b, max_iter = 100000, rtol = sqrt(eps()), atol = sqrt(eps()))
  for name in names

    #solve the problem
    reinit!(la_stop, rstate = true, x = x0, res = similar(b))
    la_stop.meta.start_time = time()
    @time eval(name)(la_stop, r = 80, is_zero_start=true)
    sol = la_stop.current_state.x

    #update the stats from the Stopping
    stats[name].nvar[i]   = n
    stats[name].status[i] = status(la_stop)
    stop_has_time = (la_stop.current_state.current_time != nothing)
    stats[name].time[i]   =  stop_has_time ? la_stop.current_state.current_time - la_stop.meta.start_time : time() - la_stop.meta.start_time
    stats[name].iter[i]   = la_stop.meta.nb_of_stop
    stats[name].score[i]  = norm(la_stop.current_state.current_score, Inf)

  end

end
  0.709734 seconds (1.10 M allocations: 268.649 MiB, 18.27% gc time, 0.35% compilation time)
  0.172047 seconds (1.58 k allocations: 18.731 MiB)
  0.056013 seconds (800.01 k allocations: 12.207 MiB)
  0.271580 seconds (1.11 M allocations: 29.017 MiB, 4.81% gc time, 70.01% compilation time)
  1.940081 seconds (2.74 M allocations: 463.573 MiB, 3.91% gc time, 64.18% compilation time)
  0.660372 seconds (1.10 M allocations: 268.557 MiB, 12.16% gc time)
  0.179197 seconds (1.39 k allocations: 16.460 MiB, 15.98% gc time)
  0.058878 seconds (800.01 k allocations: 12.207 MiB)
  0.079600 seconds (800.01 k allocations: 12.207 MiB)
  0.680473 seconds (383.89 k allocations: 334.943 MiB, 4.01% gc time)
  0.677140 seconds (1.10 M allocations: 268.557 MiB, 14.52% gc time)
  0.150991 seconds (1.49 k allocations: 17.595 MiB)
  0.059845 seconds (800.01 k allocations: 12.207 MiB)
  0.086932 seconds (800.01 k allocations: 12.207 MiB, 19.75% gc time)
  0.660140 seconds (384.09 k allocations: 335.198 MiB, 3.27% gc time)
  0.677236 seconds (1.10 M allocations: 268.557 MiB, 14.75% gc time)
  0.174273 seconds (1.58 k allocations: 18.731 MiB)
  0.058495 seconds (800.01 k allocations: 12.207 MiB)
  0.077586 seconds (800.01 k allocations: 12.207 MiB)
  0.681826 seconds (385.89 k allocations: 335.926 MiB, 4.65% gc time)
  0.666673 seconds (1.10 M allocations: 268.557 MiB, 12.06% gc time)
  0.174085 seconds (1.39 k allocations: 16.460 MiB, 16.02% gc time)
  0.057900 seconds (800.01 k allocations: 12.207 MiB)
  0.077279 seconds (800.01 k allocations: 12.207 MiB)
  0.671613 seconds (384.69 k allocations: 335.453 MiB, 4.07% gc time)
for name in names
    @show name
    @show stats[name]
end
name = :RandomizedKaczmarz
stats[name] = 5×6 DataFrame
 Row │ id     nvar   status          time      iter    score
     │ Int64  Int64  Symbol          Float64   Int64   Float64
─────┼──────────────────────────────────────────────────────────
   1 │     1    100  IterationLimit  0.709741  100001  11.4904
   2 │     2    100  IterationLimit  0.660373  100001  10.3227
   3 │     3    100  IterationLimit  0.677143  100001   7.35573
   4 │     4    100  IterationLimit  0.677238  100001   9.91928
   5 │     5    100  IterationLimit  0.666675  100001   9.25658
name = :RandomizedBlockKaczmarz
stats[name] = 5×6 DataFrame
 Row │ id     nvar   status   time      iter   score
     │ Int64  Int64  Symbol   Float64   Int64  Float64
─────┼────────────────────────────────────────────────────
   1 │     1    100  Optimal  0.166995     33  1.21199e-8
   2 │     2    100  Optimal  0.174489     29  1.30985e-8
   3 │     3    100  Optimal  0.14652      31  8.51651e-9
   4 │     4    100  Optimal  0.169391     33  6.2355e-9
   5 │     5    100  Optimal  0.169176     29  4.05817e-9
name = :RandomizedCD
stats[name] = 5×6 DataFrame
 Row │ id     nvar   status          time       iter    score
     │ Int64  Int64  Symbol          Float64    Int64   Float64
─────┼──────────────────────────────────────────────────────────
   1 │     1    100  IterationLimit  0.056015   100001  334.969
   2 │     2    100  IterationLimit  0.0588779  100001  266.787
   3 │     3    100  IterationLimit  0.0598452  100001  321.47
   4 │     4    100  IterationLimit  0.058495   100001  304.792
   5 │     5    100  IterationLimit  0.0579019  100001  330.454
name = :RandomizedCD2
stats[name] = 5×6 DataFrame
 Row │ id     nvar   status          time       iter    score
     │ Int64  Int64  Symbol          Float64    Int64   Float64
─────┼──────────────────────────────────────────────────────────
   1 │     1    100  IterationLimit  0.271581   100001  28121.7
   2 │     2    100  IterationLimit  0.0796008  100001  29849.0
   3 │     3    100  IterationLimit  0.0869341  100001  27224.9
   4 │     4    100  IterationLimit  0.0775869  100001  29506.1
   5 │     5    100  IterationLimit  0.0772791  100001  29165.6
name = :RandomizedNewton
stats[name] = 5×6 DataFrame
 Row │ id     nvar   status   time      iter   score
     │ Int64  Int64  Symbol   Float64   Int64  Float64
─────┼─────────────────────────────────────────────────
   1 │     1    100  Optimal  1.93947    1010      NaN
   2 │     2    100  Optimal  0.679822   1009      NaN
   3 │     3    100  Optimal  0.659448   1010      NaN
   4 │     4    100  Optimal  0.681213   1010      NaN
   5 │     5    100  Optimal  0.670995   1010      NaN

or run a performance profile:

using Plots
gr()
cost(df) = (df.status .!= :Optimal) * Inf + df.time
p = performance_profile(stats, cost)