Benchmark on dense overdetermined random matrices
using RandomLinearAlgebraSolvers, Random, LinearAlgebra, SparseArrays
Random.seed!(1234)
MersenneTwister(1234)
Benchmark of methods to solve Ax = b
with A
a randomly generated m x n
matrix, and b = A * xref
.
using DataFrames, Printf, SolverBenchmark, Stopping
N = 5 # number of problems
m, n = 10000, 100 # size of A: m x n
(10000, 100)
Names of solvers:
names = [:RandomizedKaczmarz, :RandomizedBlockKaczmarz, :RandomizedCD]
3-element Vector{Symbol}:
:RandomizedKaczmarz
:RandomizedBlockKaczmarz
:RandomizedCD
#Initialization of the DataFrame for n problems.
stats = Dict(name => DataFrame(
:id => 1:N,
:nvar => zeros(Int64, N),
:status => [:Unknown for i = 1:N],
:time => NaN*ones(N),
:iter => zeros(Int64, N),
:score => NaN*ones(N)) for name in names)
Dict{Symbol, DataFrames.DataFrame} with 3 entries:
:RandomizedBlockKaczmarz => 5×6 DataFrame…
:RandomizedCD => 5×6 DataFrame…
:RandomizedKaczmarz => 5×6 DataFrame…
for i=1:N
A = 100 * rand(m, n)
xref = 100 * rand(n)
b = A * xref
x0 = zeros(size(A,2))
la_stop = RLAStopping(A, b, max_iter = 100000, rtol = sqrt(eps()), atol = sqrt(eps()))
for name in names
#solve the problem
reinit!(la_stop, rstate = true, x = x0, res = similar(b))
la_stop.meta.start_time = time()
@time eval(name)(la_stop, r = 80, is_zero_start=true)
sol = la_stop.current_state.x
#update the stats from the Stopping
stats[name].nvar[i] = n
stats[name].status[i] = status(la_stop)
stop_has_time = (la_stop.current_state.current_time != nothing)
stats[name].time[i] = stop_has_time ? la_stop.current_state.current_time - la_stop.meta.start_time : time() - la_stop.meta.start_time
stats[name].iter[i] = la_stop.meta.nb_of_stop
stats[name].score[i] = norm(la_stop.current_state.current_score, Inf)
end
end
4.177661 seconds (1.38 M allocations: 2.319 GiB, 3.70% gc time, 16.67% compilation time)
3.461385 seconds (6.97 M allocations: 384.682 MiB, 4.17% gc time, 93.79% compilation time)
0.405600 seconds (634.05 k allocations: 30.086 MiB, 9.38% gc time, 69.70% compilation time)
3.642128 seconds (193.15 k allocations: 2.230 GiB, 11.08% gc time)
0.191112 seconds (1.80 k allocations: 25.871 MiB, 1.59% gc time)
0.112197 seconds (122.99 k allocations: 1.877 MiB)
3.388028 seconds (198.22 k allocations: 2.289 GiB, 3.11% gc time)
0.196151 seconds (1.85 k allocations: 26.589 MiB)
0.114658 seconds (124.93 k allocations: 1.906 MiB)
3.251137 seconds (192.43 k allocations: 2.222 GiB, 2.96% gc time)
0.184378 seconds (1.75 k allocations: 25.152 MiB)
0.115335 seconds (126.67 k allocations: 1.933 MiB)
3.256168 seconds (190.53 k allocations: 2.200 GiB, 2.72% gc time)
0.201888 seconds (1.85 k allocations: 26.589 MiB, 1.52% gc time)
0.117429 seconds (128.14 k allocations: 1.955 MiB)
for name in names
@show name
@show stats[name]
end
name = :RandomizedKaczmarz
stats[name] = 5×6 DataFrame
Row │ id nvar status time iter score
│ Int64 Int64 Symbol Float64 Int64 Float64
─────┼───────────────────────────────────────────────────
1 │ 1 100 Optimal 4.18271 15015 1.49012e-8
2 │ 2 100 Optimal 3.64192 14858 1.42609e-8
3 │ 3 100 Optimal 3.3878 15248 1.4843e-8
4 │ 4 100 Optimal 3.25093 14802 1.47847e-8
5 │ 5 100 Optimal 3.25596 14656 1.46392e-8
name = :RandomizedBlockKaczmarz
stats[name] = 5×6 DataFrame
Row │ id nvar status time iter score
│ Int64 Int64 Symbol Float64 Int64 Float64
─────┼────────────────────────────────────────────────────
1 │ 1 100 Optimal 3.45584 37 9.45874e-9
2 │ 2 100 Optimal 0.185861 36 1.00117e-8
3 │ 3 100 Optimal 0.190756 37 9.69158e-9
4 │ 4 100 Optimal 0.178815 35 1.16997e-8
5 │ 5 100 Optimal 0.196617 37 6.17001e-9
name = :RandomizedCD
stats[name] = 5×6 DataFrame
Row │ id nvar status time iter score
│ Int64 Int64 Symbol Float64 Int64 Float64
─────┼────────────────────────────────────────────────────
1 │ 1 100 Optimal 0.405579 15573 1.48983e-8
2 │ 2 100 Optimal 0.112179 15374 1.4407e-8
3 │ 3 100 Optimal 0.11464 15616 1.48257e-8
4 │ 4 100 Optimal 0.115318 15834 1.4662e-8
5 │ 5 100 Optimal 0.117413 16018 1.42925e-8
or run a performance profile:
using Plots
gr()
cost(df) = (df.status .!= :Optimal) * Inf + df.time
p = performance_profile(stats, cost)