Benchmark on dense random symmetric positive definite matrices

using RandomLinearAlgebraSolvers, Random, LinearAlgebra, SparseArrays
Random.seed!(1234)
Random.TaskLocalRNG()

Benchmark of methods to solve Ax = b with A an n x n randomly generated symmetric positive definite matrix, and b = A * xref.

using DataFrames, Printf, SolverBenchmark, Stopping
N = 5 # number of problems
n = 100 # size of A: n x n
100

Names of solvers:

names = [:RandomizedKaczmarz, :RandomizedBlockKaczmarz, :RandomizedCD, :RandomizedCD2, :RandomizedNewton]
5-element Vector{Symbol}:
 :RandomizedKaczmarz
 :RandomizedBlockKaczmarz
 :RandomizedCD
 :RandomizedCD2
 :RandomizedNewton
#Initialization of the DataFrame for n problems.
stats = Dict(name => DataFrame(
         :id     => 1:N,
         :nvar   => zeros(Int64, N),
         :status => [:Unknown for i = 1:N],
         :time   => NaN*ones(N),
         :iter   => zeros(Int64, N),
         :score  => NaN*ones(N)) for name in names)
Dict{Symbol, DataFrames.DataFrame} with 5 entries:
  :RandomizedBlockKaczmarz => 5×6 DataFrame…
  :RandomizedCD            => 5×6 DataFrame…
  :RandomizedCD2           => 5×6 DataFrame…
  :RandomizedKaczmarz      => 5×6 DataFrame…
  :RandomizedNewton        => 5×6 DataFrame…
for i=1:N

  Ar = rand(n,n); A = 1/sqrt(n) * Ar'*Ar + Matrix{Float64}(I, n, n)
  xref = 100 * rand(n)
  b = A * xref

  x0 = zeros(size(A,2))
  la_stop = RLAStopping(A, b, max_iter = 100000, rtol = sqrt(eps()), atol = sqrt(eps()))
  for name in names

    #solve the problem
    reinit!(la_stop, rstate = true, x = x0, res = similar(b))
    la_stop.meta.start_time = time()
    @time eval(name)(la_stop, r = 80, is_zero_start=true)
    sol = la_stop.current_state.x

    #update the stats from the Stopping
    stats[name].nvar[i]   = n
    stats[name].status[i] = status(la_stop)
    stop_has_time = (la_stop.current_state.current_time != nothing)
    stats[name].time[i]   =  stop_has_time ? la_stop.current_state.current_time - la_stop.meta.start_time : time() - la_stop.meta.start_time
    stats[name].iter[i]   = la_stop.meta.nb_of_stop
    stats[name].score[i]  = norm(la_stop.current_state.current_score, Inf)

  end

end
  0.566845 seconds (1.10 M allocations: 268.637 MiB, 19.15% gc time, 0.50% compilation time)
  0.074540 seconds (1.67 k allocations: 18.248 MiB)
  0.040995 seconds (800.01 k allocations: 12.207 MiB)
  0.220676 seconds (1.14 M allocations: 29.294 MiB, 75.75% compilation time)
  1.701435 seconds (2.76 M allocations: 446.825 MiB, 4.92% gc time, 69.71% compilation time)
  0.525842 seconds (1.10 M allocations: 268.557 MiB, 15.43% gc time)
  0.076577 seconds (1.72 k allocations: 18.785 MiB)
  0.041973 seconds (800.01 k allocations: 12.207 MiB)
  0.066025 seconds (800.01 k allocations: 12.207 MiB, 25.40% gc time)
  0.489206 seconds (382.22 k allocations: 326.380 MiB, 3.71% gc time)
  0.537235 seconds (1.10 M allocations: 268.557 MiB, 16.12% gc time)
  0.066341 seconds (1.47 k allocations: 16.101 MiB)
  0.043825 seconds (800.01 k allocations: 12.207 MiB)
  0.053684 seconds (800.01 k allocations: 12.207 MiB)
  0.503657 seconds (382.49 k allocations: 326.483 MiB, 5.76% gc time)
  0.527094 seconds (1.10 M allocations: 268.557 MiB, 14.53% gc time)
  0.069529 seconds (1.57 k allocations: 17.175 MiB)
  0.057993 seconds (800.01 k allocations: 12.207 MiB, 28.23% gc time)
  0.048904 seconds (800.01 k allocations: 12.207 MiB)
  0.495417 seconds (382.13 k allocations: 326.352 MiB, 3.97% gc time)
  0.529796 seconds (1.10 M allocations: 268.557 MiB, 16.09% gc time)
  0.072230 seconds (1.62 k allocations: 17.712 MiB)
  0.040737 seconds (800.01 k allocations: 12.207 MiB)
  0.053803 seconds (800.01 k allocations: 12.207 MiB)
  0.497865 seconds (381.75 k allocations: 326.206 MiB, 5.97% gc time)
for name in names
    @show name
    @show stats[name]
end
name = :RandomizedKaczmarz
stats[name] = 5×6 DataFrame
 Row │ id     nvar   status          time      iter    score
     │ Int64  Int64  Symbol          Float64   Int64   Float64
─────┼─────────────────────────────────────────────────────────
   1 │     1    100  IterationLimit  0.566851  100001  10.2994
   2 │     2    100  IterationLimit  0.525845  100001  15.7711
   3 │     3    100  IterationLimit  0.537238  100001  13.4208
   4 │     4    100  IterationLimit  0.527096  100001  12.5685
   5 │     5    100  IterationLimit  0.5298    100001  13.137
name = :RandomizedBlockKaczmarz
stats[name] = 5×6 DataFrame
 Row │ id     nvar   status   time       iter   score
     │ Int64  Int64  Symbol   Float64    Int64  Float64
─────┼─────────────────────────────────────────────────────
   1 │     1    100  Optimal  0.072386      34  1.46993e-8
   2 │     2    100  Optimal  0.074445      35  4.30919e-9
   3 │     3    100  Optimal  0.0642099     30  9.69521e-9
   4 │     4    100  Optimal  0.067369      32  2.47201e-9
   5 │     5    100  Optimal  0.0701551     33  3.8508e-9
name = :RandomizedCD
stats[name] = 5×6 DataFrame
 Row │ id     nvar   status          time       iter    score
     │ Int64  Int64  Symbol          Float64    Int64   Float64
─────┼──────────────────────────────────────────────────────────
   1 │     1    100  IterationLimit  0.0409992  100001  433.111
   2 │     2    100  IterationLimit  0.041976   100001  319.675
   3 │     3    100  IterationLimit  0.0438261  100001  381.547
   4 │     4    100  IterationLimit  0.057997   100001  393.617
   5 │     5    100  IterationLimit  0.0407388  100001  503.414
name = :RandomizedCD2
stats[name] = 5×6 DataFrame
 Row │ id     nvar   status          time       iter    score
     │ Int64  Int64  Symbol          Float64    Int64   Float64
─────┼──────────────────────────────────────────────────────────
   1 │     1    100  IterationLimit  0.220678   100001  28352.9
   2 │     2    100  IterationLimit  0.066025   100001  27199.2
   3 │     3    100  IterationLimit  0.0536861  100001  27964.2
   4 │     4    100  IterationLimit  0.0489049  100001  29093.1
   5 │     5    100  IterationLimit  0.0538061  100001  28734.3
name = :RandomizedNewton
stats[name] = 5×6 DataFrame
 Row │ id     nvar   status   time      iter   score
     │ Int64  Int64  Symbol   Float64   Int64  Float64
─────┼─────────────────────────────────────────────────
   1 │     1    100  Optimal  1.70095    1010      NaN
   2 │     2    100  Optimal  0.488756   1010      NaN
   3 │     3    100  Optimal  0.503205   1010      NaN
   4 │     4    100  Optimal  0.494952   1010      NaN
   5 │     5    100  Optimal  0.497374   1010      NaN

or run a performance profile:

using Plots
gr()
cost(df) = (df.status .!= :Optimal) * Inf + df.time
p = performance_profile(stats, cost)