Benchmark on dense overdetermined random matrices
using RandomLinearAlgebraSolvers, Random, LinearAlgebra, SparseArrays
Random.seed!(1234)
Random.TaskLocalRNG()
Benchmark of methods to solve Ax = b
with A
a randomly generated m x n
matrix, and b = A * xref
.
using DataFrames, Printf, SolverBenchmark, Stopping
N = 5 # number of problems
m, n = 10000, 100 # size of A: m x n
(10000, 100)
Names of solvers:
names = [:RandomizedKaczmarz, :RandomizedBlockKaczmarz, :RandomizedCD]
3-element Vector{Symbol}:
:RandomizedKaczmarz
:RandomizedBlockKaczmarz
:RandomizedCD
#Initialization of the DataFrame for n problems.
stats = Dict(name => DataFrame(
:id => 1:N,
:nvar => zeros(Int64, N),
:status => [:Unknown for i = 1:N],
:time => NaN*ones(N),
:iter => zeros(Int64, N),
:score => NaN*ones(N)) for name in names)
Dict{Symbol, DataFrames.DataFrame} with 3 entries:
:RandomizedBlockKaczmarz => 5×6 DataFrame…
:RandomizedCD => 5×6 DataFrame…
:RandomizedKaczmarz => 5×6 DataFrame…
for i=1:N
A = 100 * rand(m, n)
xref = 100 * rand(n)
b = A * xref
x0 = zeros(size(A,2))
la_stop = RLAStopping(A, b, max_iter = 100000, rtol = sqrt(eps()), atol = sqrt(eps()))
for name in names
#solve the problem
reinit!(la_stop, rstate = true, x = x0, res = similar(b))
la_stop.meta.start_time = time()
@time eval(name)(la_stop, r = 80, is_zero_start=true)
sol = la_stop.current_state.x
#update the stats from the Stopping
stats[name].nvar[i] = n
stats[name].status[i] = status(la_stop)
stop_has_time = (la_stop.current_state.current_time != nothing)
stats[name].time[i] = stop_has_time ? la_stop.current_state.current_time - la_stop.meta.start_time : time() - la_stop.meta.start_time
stats[name].iter[i] = la_stop.meta.nb_of_stop
stats[name].score[i] = norm(la_stop.current_state.current_score, Inf)
end
end
3.441683 seconds (1.41 M allocations: 2.208 GiB, 4.08% gc time, 18.05% compilation time)
3.090912 seconds (6.97 M allocations: 370.568 MiB, 4.56% gc time, 96.80% compilation time)
0.386846 seconds (733.36 k allocations: 33.008 MiB, 19.78% gc time, 74.84% compilation time)
3.087461 seconds (189.27 k allocations: 2.185 GiB, 9.28% gc time)
0.097008 seconds (1.89 k allocations: 25.444 MiB, 2.88% gc time)
0.094953 seconds (123.51 k allocations: 1.885 MiB)
2.854447 seconds (190.02 k allocations: 2.193 GiB, 3.20% gc time)
0.100733 seconds (1.94 k allocations: 26.132 MiB, 2.75% gc time)
0.095013 seconds (123.50 k allocations: 1.884 MiB)
2.831633 seconds (189.29 k allocations: 2.185 GiB, 3.06% gc time)
0.090709 seconds (1.84 k allocations: 24.757 MiB)
0.093717 seconds (123.55 k allocations: 1.885 MiB)
2.777898 seconds (186.20 k allocations: 2.149 GiB, 2.91% gc time)
0.092775 seconds (1.84 k allocations: 24.757 MiB)
0.100888 seconds (130.08 k allocations: 1.985 MiB)
for name in names
@show name
@show stats[name]
end
name = :RandomizedKaczmarz
stats[name] = 5×6 DataFrame
Row │ id nvar status time iter score
│ Int64 Int64 Symbol Float64 Int64 Float64
─────┼───────────────────────────────────────────────────
1 │ 1 100 Optimal 3.44627 14294 1.46101e-8
2 │ 2 100 Optimal 3.08727 14559 1.49012e-8
3 │ 3 100 Optimal 2.85426 14617 1.46683e-8
4 │ 4 100 Optimal 2.83144 14561 1.38825e-8
5 │ 5 100 Optimal 2.77771 14323 1.429e-8
name = :RandomizedBlockKaczmarz
stats[name] = 5×6 DataFrame
Row │ id nvar status time iter score
│ Int64 Int64 Symbol Float64 Int64 Float64
─────┼─────────────────────────────────────────────────────
1 │ 1 100 Optimal 3.08842 38 7.18865e-9
2 │ 2 100 Optimal 0.0945191 37 7.33417e-9
3 │ 3 100 Optimal 0.0982518 38 7.39237e-9
4 │ 4 100 Optimal 0.0881829 36 1.14669e-8
5 │ 5 100 Optimal 0.0902488 36 1.28639e-8
name = :RandomizedCD
stats[name] = 5×6 DataFrame
Row │ id nvar status time iter score
│ Int64 Int64 Symbol Float64 Int64 Float64
─────┼─────────────────────────────────────────────────────
1 │ 1 100 Optimal 0.386831 15047 1.46088e-8
2 │ 2 100 Optimal 0.094938 15439 1.48515e-8
3 │ 3 100 Optimal 0.0949981 15437 1.44148e-8
4 │ 4 100 Optimal 0.0937018 15444 1.48318e-8
5 │ 5 100 Optimal 0.100874 16260 1.42488e-8
or run a performance profile:
using Plots
gr()
cost(df) = (df.status .!= :Optimal) * Inf + df.time
p = performance_profile(stats, cost)