RandomLinearAlgebraSolvers
Documentation for RandomLinearAlgebraSolvers.
RandomLinearAlgebraSolvers.RLAStopping
RandomLinearAlgebraSolvers.RandomVectorSketch
RandomLinearAlgebraSolvers.RandomizedBlockKaczmarz
RandomLinearAlgebraSolvers.RandomizedCD
RandomLinearAlgebraSolvers.RandomizedCD2
RandomLinearAlgebraSolvers.RandomizedKaczmarz
RandomLinearAlgebraSolvers.RandomizedNewton
RandomLinearAlgebraSolvers.randomInv
RandomLinearAlgebraSolvers.random_matrix_1
RandomLinearAlgebraSolvers.random_matrix_2
RandomLinearAlgebraSolvers.random_matrix_3
RandomLinearAlgebraSolvers.random_matrix_4
RandomLinearAlgebraSolvers.random_projector_rank
RandomLinearAlgebraSolvers.random_projector_sparse
RandomLinearAlgebraSolvers.RLAStopping
— Methodstp = RLAStopping(A, b::S; n_listofstates::Int = 0, kwargs...)
Creator of a LAStopping
tailored for this package. The problem, stp.pb, is a Stopping.LinearSystem
if A
is dense, and a LLSModels.LLSModel
otherwise. The state allocates space for the residual, stp.current_state.res
, of length |b|
. This stopping uses the infinity norm of stp.current_state.res
to declare optimality.
RandomLinearAlgebraSolvers.RandomVectorSketch
— MethodRandom vector sketch
Section 3.2 in Gower, R. M., & Richtárik, P. (2015). Randomized iterative methods for linear systems. SIAM Journal on Matrix Analysis and Applications, 36(4), 1660-1690.
RandomLinearAlgebraSolvers.RandomizedBlockKaczmarz
— MethodRandomized block Kaczmarz
Section 3.5 in Gower, R. M., & Richtárik, P. (2015). Randomized iterative methods for linear systems. SIAM Journal on Matrix Analysis and Applications, 36(4), 1660-1690.
RandomLinearAlgebraSolvers.RandomizedCD
— MethodRandomized coordinate descent
Section 3.7 in Gower, R. M., & Richtárik, P. (2015). Randomized iterative methods for linear systems. SIAM Journal on Matrix Analysis and Applications, 36(4), 1660-1690.
RandomLinearAlgebraSolvers.RandomizedCD2
— MethodRandomized coordinate descent for symmetric positive definite matrix
Section 3.4 in Gower, R. M., & Richtárik, P. (2015). Randomized iterative methods for linear systems. SIAM Journal on Matrix Analysis and Applications, 36(4), 1660-1690.
RandomLinearAlgebraSolvers.RandomizedKaczmarz
— MethodRandomized Kaczmarz
Section 3.3 in Gower, R. M., & Richtárik, P. (2015). Randomized iterative methods for linear systems. SIAM Journal on Matrix Analysis and Applications, 36(4), 1660-1690.
RK takes a step in the direction of the negative stochastic gradient. This means that it is equivalent to the SGD method. However, the stepsize choice is very special: RK chooses the stepsize which leads to the point which is closest to x* in the Euclidean norm.
RandomLinearAlgebraSolvers.RandomizedNewton
— MethodRandomized Newton -> for symmetric positive definite matrix
Section 3.6 in Gower, R. M., & Richtárik, P. (2015). Randomized iterative methods for linear systems. SIAM Journal on Matrix Analysis and Applications, 36(4), 1660-1690.
RandomLinearAlgebraSolvers.randomInv
— MethodSolve TAx=Tb with T a random projector
RandomLinearAlgebraSolvers.random_matrix_1
— MethodRandom projector of size k x m with a normal distribution
RandomLinearAlgebraSolvers.random_matrix_2
— MethodRandom projector of size k x m with -1 or 1 both with probability 1/2
RandomLinearAlgebraSolvers.random_matrix_3
— MethodRandom projector of size k x m with -1,0,1 respectively with probability 1/6,4/6,1/6
RandomLinearAlgebraSolvers.random_matrix_4
— MethodRandom projector of size k x m with orthogonal projection on a random k-dimensional linear subspace of R^m
RandomLinearAlgebraSolvers.random_projector_rank
— MethodCheck the average rank of random projector over N random matrices of size k*m
RandomLinearAlgebraSolvers.random_projector_sparse
— MethodCheck the average sparsity of random projector over N random matrices of size k*m