Reference
Contents
Index
MPCC.AbstractMPCCModel
MPCC.MPCCCounters
MPCC.MPCCModelMeta
MPCC.NLMPCC
LinearOperators.reset!
LinearOperators.reset!
MPCC.complementarity_constrained
MPCC.consG
MPCC.consG!
MPCC.consG!
MPCC.consG_lin
MPCC.consG_lin!
MPCC.consG_nln
MPCC.consG_nln!
MPCC.consH
MPCC.consH!
MPCC.consH!
MPCC.consH_lin
MPCC.consH_lin!
MPCC.consH_nln
MPCC.consH_nln!
MPCC.decrement_cc!
MPCC.hGprod
MPCC.hGprod!
MPCC.hHprod
MPCC.hHprod!
MPCC.hessG
MPCC.hessG_coord
MPCC.hessG_coord!
MPCC.hessG_op
MPCC.hessG_op!
MPCC.hessG_structure
MPCC.hessG_structure!
MPCC.hessH
MPCC.hessH_coord
MPCC.hessH_coord!
MPCC.hessH_op
MPCC.hessH_op!
MPCC.hessH_structure
MPCC.hessH_structure!
MPCC.increment_cc!
MPCC.jG_op!
MPCC.jGprod
MPCC.jGprod!
MPCC.jGprod!
MPCC.jGprodlin
MPCC.jGprodlin!
MPCC.jGprodnln
MPCC.jGprodnln!
MPCC.jGtprod
MPCC.jGtprod!
MPCC.jGtprod!
MPCC.jGtprodlin
MPCC.jGtprodlin!
MPCC.jGtprodnln
MPCC.jGtprodnln!
MPCC.jH_op!
MPCC.jHprod
MPCC.jHprod!
MPCC.jHprod!
MPCC.jHprodlin
MPCC.jHprodlin!
MPCC.jHprodnln
MPCC.jHprodnln!
MPCC.jHtprod
MPCC.jHtprod!
MPCC.jHtprod!
MPCC.jHtprodlin
MPCC.jHtprodlin!
MPCC.jHtprodnln
MPCC.jHtprodnln!
MPCC.jacG
MPCC.jacG_coord
MPCC.jacG_coord!
MPCC.jacG_lin_coord
MPCC.jacG_lin_coord!
MPCC.jacG_lin_op
MPCC.jacG_lin_op!
MPCC.jacG_lin_structure
MPCC.jacG_lin_structure!
MPCC.jacG_nln_coord
MPCC.jacG_nln_coord!
MPCC.jacG_nln_op
MPCC.jacG_nln_op!
MPCC.jacG_nln_structure
MPCC.jacG_nln_structure!
MPCC.jacG_op
MPCC.jacG_structure
MPCC.jacG_structure!
MPCC.jacH
MPCC.jacH_coord
MPCC.jacH_coord!
MPCC.jacH_lin_coord
MPCC.jacH_lin_coord!
MPCC.jacH_lin_op
MPCC.jacH_lin_op!
MPCC.jacH_lin_structure
MPCC.jacH_lin_structure!
MPCC.jacH_nln_coord
MPCC.jacH_nln_coord!
MPCC.jacH_nln_op
MPCC.jacH_nln_op!
MPCC.jacH_nln_structure
MPCC.jacH_nln_structure!
MPCC.jacH_op
MPCC.jacH_structure
MPCC.jacH_structure!
MPCC.neval_consG
MPCC.neval_consG_lin
MPCC.neval_consG_nln
MPCC.neval_consH
MPCC.neval_consH_lin
MPCC.neval_consH_nln
MPCC.neval_hGprod
MPCC.neval_hHprod
MPCC.neval_hessG
MPCC.neval_hessH
MPCC.neval_jGprod
MPCC.neval_jGprod_lin
MPCC.neval_jGprod_nln
MPCC.neval_jGtprod
MPCC.neval_jGtprod_lin
MPCC.neval_jGtprod_nln
MPCC.neval_jHprod
MPCC.neval_jHprod_lin
MPCC.neval_jHprod_nln
MPCC.neval_jHtprod
MPCC.neval_jHtprod_lin
MPCC.neval_jHtprod_nln
MPCC.neval_jacG
MPCC.neval_jacG_lin
MPCC.neval_jacG_nln
MPCC.neval_jacH
MPCC.neval_jacH_lin
MPCC.neval_jacH_nln
MPCC.viol
MPCC.viol
MPCC.viol!
MPCC.AbstractMPCCModel
— TypeBase type for an optimization model with degenerate constraints.
min f(x)
l <= x <= u
lb <= c(x) <= ub
0 <= G(x) _|_ H(x) >= 0
MPCC.MPCCCounters
— TypeMPCCCounters
Initialization: MPCCCounters()
MPCC.MPCCModelMeta
— TypeA composite type that represents the main features of the optimization problem
optimize obj(x) subject to lvar ≤ x ≤ uvar lcon ≤ cons(x) ≤ ucon lcc ≤ G(x) | H(x) >= ucc
where x is an nvar-dimensional vector, obj is the real-valued objective function, cons is the vector-valued constraint function, optimize is either "minimize" or "maximize".
Here, lvar, uvar, lcon and ucon are vectors. Some of their components may be infinite to indicate that the corresponding bound or general constraint is not present.
MPCC.NLMPCC
— TypeConvert an MPCCModel to an NLPModels as follows. Definit le type NLMPCC : min f(x) s.t. l <= x <= u lcon(tb) <= cnl(x) <= ucon
with
cnl(x) := c(x),G(x),H(x),G(x).*H(x)
LinearOperators.reset!
— Methodreset!(nlp)
Reset evaluation count in nlp
LinearOperators.reset!
— Methodreset!(counters)
Reset evaluation counters
MPCC.complementarity_constrained
— Methodcomplementarity_constrained(nlp)
complementarity_constrained(meta)
Returns whether the problem's constraints are all inequalities. Unconstrained problems return true.
MPCC.consG!
— Methodc = consG(nlp, x, c)
Evaluate the constraints of consG at x
in place.
MPCC.consG!
— MethodEvaluate $G(x)$, the constraints at x
.
MPCC.consG
— Methodc = consG(nlp, x, c)
Evaluate the constraints of consG at x
.
MPCC.consG_lin!
— Functionc = consG_lin!(nlp, x, c)
Evaluate the linear constraints at x
in place.
MPCC.consG_lin
— Methodc = consG_lin(nlp, x, c)
Evaluate the linear constraints at x
.
MPCC.consG_nln!
— Functionc = consG_nln!(nlp, x, c)
Evaluate the nonlinear constraints at x
in place.
MPCC.consG_nln
— Methodc = consG_nln(nlp, x, c)
Evaluate the nonlinear constraints at x
.
MPCC.consH!
— Methodc = consH(nlp, x, c)
Evaluate the constraints of consH at x
in place.
MPCC.consH!
— MethodEvaluate $H(x)$, the constraints at x
.
MPCC.consH
— Methodc = consH(nlp, x, c)
Evaluate the constraints of consH at x
.
MPCC.consH_lin!
— Functionc = consH_lin!(nlp, x, c)
Evaluate the linear constraints at x
in place.
MPCC.consH_lin
— Methodc = consH_lin(nlp, x, c)
Evaluate the linear constraints at x
.
MPCC.consH_nln!
— Functionc = consH_nln!(nlp, x, c)
Evaluate the nonlinear constraints at x
in place.
MPCC.consH_nln
— Methodc = consH_nln(nlp, x, c)
Evaluate the nonlinear constraints at x
.
MPCC.decrement_cc!
— Methoddecrement!(nlp, s)
Decrement counter s
of problem nlp
.
MPCC.hGprod!
— FunctionHv = hGprod!(nlp, x, y, v, Hv)
Evaluate the product of the Lagrangian Hessian at (x,y)
with the vector v
in place.
MPCC.hGprod
— MethodHv = hGprod(nlp, x, y, v)
Evaluate the product of the Lagrangian Hessian at (x,y)
with the vector v
.
MPCC.hHprod!
— FunctionHv = hHprod!(nlp, x, y, v, Hv)
Evaluate the product of the Lagrangian Hessian at (x,y)
with the vector v
in place.
MPCC.hHprod
— MethodHv = hHprod(nlp, x, y, v)
Evaluate the product of the Lagrangian Hessian at (x,y)
with the vector v
.
MPCC.hessG
— MethodHx = hessG(nlp, x, y)
Evaluate the Lagrangian Hessian at (x,y)
as a sparse matrix. A Symmetric
object wrapping the lower triangle is returned.
MPCC.hessG_coord!
— Functionvals = hessG_coord!(nlp, x, y, vals)
Evaluate the Lagrangian Hessian at (x,y)
in sparse coordinate format, overwriting vals
. Only the lower triangle is returned.
MPCC.hessG_coord
— Methodvals = hessG_coord(nlp, x, y)
Evaluate the Lagrangian Hessian at (x,y)
in sparse coordinate format. Only the lower triangle is returned.
MPCC.hessG_op!
— MethodH = hessG_op!(nlp, x, y, Hv)
Return the Lagrangian Hessian at (x,y)
with objective function scaled by obj_weight
as a linear operator, and storing the result on Hv
. The resulting object may be used as if it were a matrix, e.g., w = H * v
. The vector Hv
is used as preallocated storage for the operation.
MPCC.hessG_op
— MethodH = hessG_op(nlp, x, y)
Return the Lagrangian Hessian at (x,y)
as a linear operator. The resulting object may be used as if it were a matrix, e.g., H * v
.
MPCC.hessG_structure!
— FunctionhessG_structure!(nlp, rows, cols)
Return the structure of the Lagrangian Hessian in sparse coordinate format in place.
MPCC.hessG_structure
— Method(rows,cols) = hessG_structure(nlp)
Return the structure of the Lagrangian Hessian in sparse coordinate format.
MPCC.hessH
— MethodHx = hessH(nlp, x, y)
Evaluate the Lagrangian Hessian at (x,y)
as a sparse matrix. A Symmetric
object wrapping the lower triangle is returned.
MPCC.hessH_coord!
— Functionvals = hessH_coord!(nlp, x, y, vals)
Evaluate the Lagrangian Hessian at (x,y)
in sparse coordinate format, overwriting vals
. Only the lower triangle is returned.
MPCC.hessH_coord
— Methodvals = hessH_coord(nlp, x, y)
Evaluate the Lagrangian Hessian at (x,y)
in sparse coordinate format. Only the lower triangle is returned.
MPCC.hessH_op!
— MethodH = hessH_op!(nlp, x, y, Hv)
Return the Lagrangian Hessian at (x,y)
with objective function scaled by obj_weight
as a linear operator, and storing the result on Hv
. The resulting object may be used as if it were a matrix, e.g., w = H * v
. The vector Hv
is used as preallocated storage for the operation.
MPCC.hessH_op
— MethodH = hessH_op(nlp, x, y)
Return the Lagrangian Hessian at (x,y)
as a linear operator. The resulting object may be used as if it were a matrix, e.g., H * v
.
MPCC.hessH_structure!
— FunctionhessH_structure!(nlp, rows, cols)
Return the structure of the Lagrangian Hessian in sparse coordinate format in place.
MPCC.hessH_structure
— Method(rows,cols) = hessH_structure(nlp)
Return the structure of the Lagrangian Hessian in sparse coordinate format.
MPCC.increment_cc!
— Methodincrement_cc!(nlp, s)
Increment counter s
of problem nlp
.
MPCC.jG_op!
— MethodJ = jG_op!(nlp, x, Jv, Jtv)
Return the Jacobian at x
as a linear operator. The resulting object may be used as if it were a matrix, e.g., J * v
or J' * v
. The values Jv
and Jtv
are used as preallocated storage for the operations.
MPCC.jGprod!
— MethodJv = jGprod!(nlp, x, v, Jv)
Evaluate $J(x)v$, the Jacobian-vector product at x
in place.
MPCC.jGprod!
— MethodJGv = jGprod!(nlp, x, v, Jv) Evaluate $∇G(x)v$, the Jacobian-vector product at x
in place.
MPCC.jGprod
— MethodJv = jGprod(nlp, x, v)
Evaluate $J(x)v$, the Jacobian-vector product at x
.
MPCC.jGprodlin!
— FunctionJv = jGprodlin!(nlp, x, v, Jv)
Evaluate $J(x)v$, the linear Jacobian-vector product at x
in place.
MPCC.jGprodlin
— MethodJv = jGprodlin(nlp, x, v)
Evaluate $J(x)v$, the linear Jacobian-vector product at x
.
MPCC.jGprodnln!
— FunctionJv = jGprodnln!(nlp, x, v, Jv)
Evaluate $J(x)v$, the nonlinear Jacobian-vector product at x
in place.
MPCC.jGprodnln
— MethodJv = jGprodnln(nlp, x, v)
Evaluate $J(x)v$, the nonlinear Jacobian-vector product at x
.
MPCC.jGtprod!
— MethodJtv = jGtprod!(nlp, x, v, Jtv)
Evaluate $J(x)^Tv$, the transposed-Jacobian-vector product at x
in place. If the problem has linear and nonlinear constraints, this function allocates.
MPCC.jGtprod!
— MethodJtv = jtprodG(nlp, x, v, Jtv)
Evaluate $∇G(x)^Tv$, the transposed-Jacobian-vector product at x
MPCC.jGtprod
— MethodJtv = jGtprod(nlp, x, v)
Evaluate $J(x)^Tv$, the transposed-Jacobian-vector product at x
.
MPCC.jGtprodlin!
— FunctionJtv = jGtprodlin!(nlp, x, v, Jtv)
Evaluate $J(x)^Tv$, the linear transposed-Jacobian-vector product at x
in place.
MPCC.jGtprodlin
— MethodJtv = jGtprodlin(nlp, x, v)
Evaluate $J(x)^Tv$, the linear transposed-Jacobian-vector product at x
.
MPCC.jGtprodnln!
— FunctionJtv = jGtprodnln!(nlp, x, v, Jtv)
Evaluate $J(x)^Tv$, the nonlinear transposed-Jacobian-vector product at x
in place.
MPCC.jGtprodnln
— MethodJtv = jGtprodnln(nlp, x, v)
Evaluate $J(x)^Tv$, the nonlinear transposed-Jacobian-vector product at x
.
MPCC.jH_op!
— MethodJ = jH_op!(nlp, x, Jv, Jtv)
Return the Jacobian at x
as a linear operator. The resulting object may be used as if it were a matrix, e.g., J * v
or J' * v
. The values Jv
and Jtv
are used as preallocated storage for the operations.
MPCC.jHprod!
— MethodJv = jHprod!(nlp, x, v, Jv)
Evaluate $J(x)v$, the Jacobian-vector product at x
in place.
MPCC.jHprod!
— MethodJHv = jHprod!(nlp, x, v, Jv) Evaluate $∇H(x)v$, the Jacobian-vector product at x
in place.
MPCC.jHprod
— MethodJv = jHprod(nlp, x, v)
Evaluate $J(x)v$, the Jacobian-vector product at x
.
MPCC.jHprodlin!
— FunctionJv = jHprodlin!(nlp, x, v, Jv)
Evaluate $J(x)v$, the linear Jacobian-vector product at x
in place.
MPCC.jHprodlin
— MethodJv = jHprodlin(nlp, x, v)
Evaluate $J(x)v$, the linear Jacobian-vector product at x
.
MPCC.jHprodnln!
— FunctionJv = jHprodnln!(nlp, x, v, Jv)
Evaluate $J(x)v$, the nonlinear Jacobian-vector product at x
in place.
MPCC.jHprodnln
— MethodJv = jHprodnln(nlp, x, v)
Evaluate $J(x)v$, the nonlinear Jacobian-vector product at x
.
MPCC.jHtprod!
— MethodJtv = jHtprod!(nlp, x, v, Jtv)
Evaluate $J(x)^Tv$, the transposed-Jacobian-vector product at x
in place. If the problem has linear and nonlinear constraints, this function allocates.
MPCC.jHtprod!
— MethodJtv = jtprodH(nlp, x, v, Jtv)
Evaluate $∇H(x)^Tv$, the transposed-Jacobian-vector product at x
MPCC.jHtprod
— MethodJtv = jHtprod(nlp, x, v)
Evaluate $J(x)^Tv$, the transposed-Jacobian-vector product at x
.
MPCC.jHtprodlin!
— FunctionJtv = jHtprodlin!(nlp, x, v, Jtv)
Evaluate $J(x)^Tv$, the linear transposed-Jacobian-vector product at x
in place.
MPCC.jHtprodlin
— MethodJtv = jHtprodlin(nlp, x, v)
Evaluate $J(x)^Tv$, the linear transposed-Jacobian-vector product at x
.
MPCC.jHtprodnln!
— FunctionJtv = jHtprodnln!(nlp, x, v, Jtv)
Evaluate $J(x)^Tv$, the nonlinear transposed-Jacobian-vector product at x
in place.
MPCC.jHtprodnln
— MethodJtv = jHtprodnln(nlp, x, v)
Evaluate $J(x)^Tv$, the nonlinear transposed-Jacobian-vector product at x
.
MPCC.jacG
— MethodJx = jacG(nlp, x)
Evaluate $J(x)$, the constraints Jacobian at x
as a sparse matrix.
MPCC.jacG_coord!
— Methodvals = jacG_coord!(nlp, x, vals)
Evaluate $J(x)$, the constraints Jacobian at x
in sparse coordinate format, rewriting vals
.
MPCC.jacG_coord
— Methodvals = jacG_coord(nlp, x)
Evaluate $J(x)$, the constraints Jacobian at x
in sparse coordinate format.
MPCC.jacG_lin_coord!
— Functionvals = jacG_lin_coord!(nlp, x, vals)
Evaluate $J(x)$, the linear constraints Jacobian at x
in sparse coordinate format, overwriting vals
.
MPCC.jacG_lin_coord
— Methodvals = jacG_lin_coord(nlp, x)
Evaluate $J(x)$, the linear constraints Jacobian at x
in sparse coordinate format.
MPCC.jacG_lin_op!
— MethodJ = jacG_lin_op!(nlp, x, Jv, Jtv)
Return the linear Jacobian at x
as a linear operator. The resulting object may be used as if it were a matrix, e.g., J * v
or J' * v
. The values Jv
and Jtv
are used as preallocated storage for the operations.
MPCC.jacG_lin_op
— MethodJ = jacG_lin_op(nlp, x)
Return the linear Jacobian at x
as a linear operator. The resulting object may be used as if it were a matrix, e.g., J * v
or J' * v
.
MPCC.jacG_lin_structure!
— FunctionjacG_lin_structure!(nlp, rows, cols)
Return the structure of the linear constraints Jacobian in sparse coordinate format in place.
MPCC.jacG_lin_structure
— Method(rows,cols) = jacG_lin_structure(nlp)
Return the structure of the linear constraints Jacobian in sparse coordinate format.
MPCC.jacG_nln_coord!
— Functionvals = jacG_nln_coord!(nlp, x, vals)
Evaluate $J(x)$, the nonlinear constraints Jacobian at x
in sparse coordinate format, overwriting vals
.
MPCC.jacG_nln_coord
— Methodvals = jacG_nln_coord(nlp, x)
Evaluate $J(x)$, the nonlinear constraints Jacobian at x
in sparse coordinate format.
MPCC.jacG_nln_op!
— MethodJ = jacG_nln_op!(nlp, x, Jv, Jtv)
Return the nonlinear Jacobian at x
as a linear operator. The resulting object may be used as if it were a matrix, e.g., J * v
or J' * v
. The values Jv
and Jtv
are used as preallocated storage for the operations.
MPCC.jacG_nln_op
— MethodJ = jacG_nln_op(nlp, x)
Return the nonlinear Jacobian at x
as a linear operator. The resulting object may be used as if it were a matrix, e.g., J * v
or J' * v
.
MPCC.jacG_nln_structure!
— FunctionjacG_nln_structure!(nlp, rows, cols)
Return the structure of the nonlinear constraints Jacobian in sparse coordinate format in place.
MPCC.jacG_nln_structure
— Method(rows,cols) = jacG_nln_structure(nlp)
Return the structure of the nonlinear constraints Jacobian in sparse coordinate format.
MPCC.jacG_op
— MethodJ = jacG_op(nlp, x)
Return the Jacobian at x
as a linear operator. The resulting object may be used as if it were a matrix, e.g., J * v
or J' * v
.
MPCC.jacG_structure!
— MethodjacG_structure!(nlp, rows, cols)
Return the structure of the constraints Jacobian in sparse coordinate format in place.
MPCC.jacG_structure
— Method(rows,cols) = jacG_structure(nlp)
Return the structure of the constraints Jacobian in sparse coordinate format.
MPCC.jacH
— MethodJx = jacH(nlp, x)
Evaluate $J(x)$, the constraints Jacobian at x
as a sparse matrix.
MPCC.jacH_coord!
— Methodvals = jacH_coord!(nlp, x, vals)
Evaluate $J(x)$, the constraints Jacobian at x
in sparse coordinate format, rewriting vals
.
MPCC.jacH_coord
— Methodvals = jacH_coord(nlp, x)
Evaluate $J(x)$, the constraints Jacobian at x
in sparse coordinate format.
MPCC.jacH_lin_coord!
— Functionvals = jacH_lin_coord!(nlp, x, vals)
Evaluate $J(x)$, the linear constraints Jacobian at x
in sparse coordinate format, overwriting vals
.
MPCC.jacH_lin_coord
— Methodvals = jacH_lin_coord(nlp, x)
Evaluate $J(x)$, the linear constraints Jacobian at x
in sparse coordinate format.
MPCC.jacH_lin_op!
— MethodJ = jacH_lin_op!(nlp, x, Jv, Jtv)
Return the linear Jacobian at x
as a linear operator. The resulting object may be used as if it were a matrix, e.g., J * v
or J' * v
. The values Jv
and Jtv
are used as preallocated storage for the operations.
MPCC.jacH_lin_op
— MethodJ = jacH_lin_op(nlp, x)
Return the linear Jacobian at x
as a linear operator. The resulting object may be used as if it were a matrix, e.g., J * v
or J' * v
.
MPCC.jacH_lin_structure!
— FunctionjacH_lin_structure!(nlp, rows, cols)
Return the structure of the linear constraints Jacobian in sparse coordinate format in place.
MPCC.jacH_lin_structure
— Method(rows,cols) = jacH_lin_structure(nlp)
Return the structure of the linear constraints Jacobian in sparse coordinate format.
MPCC.jacH_nln_coord!
— Functionvals = jacH_nln_coord!(nlp, x, vals)
Evaluate $J(x)$, the nonlinear constraints Jacobian at x
in sparse coordinate format, overwriting vals
.
MPCC.jacH_nln_coord
— Methodvals = jacH_nln_coord(nlp, x)
Evaluate $J(x)$, the nonlinear constraints Jacobian at x
in sparse coordinate format.
MPCC.jacH_nln_op!
— MethodJ = jacH_nln_op!(nlp, x, Jv, Jtv)
Return the nonlinear Jacobian at x
as a linear operator. The resulting object may be used as if it were a matrix, e.g., J * v
or J' * v
. The values Jv
and Jtv
are used as preallocated storage for the operations.
MPCC.jacH_nln_op
— MethodJ = jacH_nln_op(nlp, x)
Return the nonlinear Jacobian at x
as a linear operator. The resulting object may be used as if it were a matrix, e.g., J * v
or J' * v
.
MPCC.jacH_nln_structure!
— FunctionjacH_nln_structure!(nlp, rows, cols)
Return the structure of the nonlinear constraints Jacobian in sparse coordinate format in place.
MPCC.jacH_nln_structure
— Method(rows,cols) = jacH_nln_structure(nlp)
Return the structure of the nonlinear constraints Jacobian in sparse coordinate format.
MPCC.jacH_op
— MethodJ = jacH_op(nlp, x)
Return the Jacobian at x
as a linear operator. The resulting object may be used as if it were a matrix, e.g., J * v
or J' * v
.
MPCC.jacH_structure!
— MethodjacH_structure!(nlp, rows, cols)
Return the structure of the constraints Jacobian in sparse coordinate format in place.
MPCC.jacH_structure
— Method(rows,cols) = jacH_structure(nlp)
Return the structure of the constraints Jacobian in sparse coordinate format.
MPCC.neval_consG
— Methodneval_consG(nlp)
Get the number of consG
evaluations.
MPCC.neval_consG_lin
— Methodneval_consG_lin(nlp)
Get the number of consG
evaluations.
MPCC.neval_consG_nln
— Methodneval_consG_nln(nlp)
Get the number of consG
evaluations.
MPCC.neval_consH
— Methodneval_consH(nlp)
Get the number of consH
evaluations.
MPCC.neval_consH_lin
— Methodneval_consH_lin(nlp)
Get the number of consH
evaluations.
MPCC.neval_consH_nln
— Methodneval_consH_nln(nlp)
Get the number of consH
evaluations.
MPCC.neval_hGprod
— Methodneval_hGprod(nlp)
Get the number of hGprod
evaluations.
MPCC.neval_hHprod
— Methodneval_hHprod(nlp)
Get the number of hHprod
evaluations.
MPCC.neval_hessG
— Methodneval_hessG(nlp)
Get the number of hessG
evaluations.
MPCC.neval_hessH
— Methodneval_hessH(nlp)
Get the number of hessH
evaluations.
MPCC.neval_jGprod
— Methodneval_jGprod(nlp)
Get the number of jGprod
evaluations.
MPCC.neval_jGprod_lin
— Methodneval_jGprod_lin(nlp)
Get the number of jGprod
evaluations.
MPCC.neval_jGprod_nln
— Methodneval_jGprod_nln(nlp)
Get the number of jGprod
evaluations.
MPCC.neval_jGtprod
— Methodneval_jGtprod(nlp)
Get the number of jGtprod
evaluations.
MPCC.neval_jGtprod_lin
— Methodneval_jGtprod_lin(nlp)
Get the number of jGtprod
evaluations.
MPCC.neval_jGtprod_nln
— Methodneval_jGtprod_nln(nlp)
Get the number of jGtprod
evaluations.
MPCC.neval_jHprod
— Methodneval_jHprod(nlp)
Get the number of jHprod
evaluations.
MPCC.neval_jHprod_lin
— Methodneval_jHprod_lin(nlp)
Get the number of jHprod
evaluations.
MPCC.neval_jHprod_nln
— Methodneval_jHprod_nln(nlp)
Get the number of jHprod
evaluations.
MPCC.neval_jHtprod
— Methodneval_jHtprod(nlp)
Get the number of jHtprod
evaluations.
MPCC.neval_jHtprod_lin
— Methodneval_jHtprod_lin(nlp)
Get the number of jHtprod
evaluations.
MPCC.neval_jHtprod_nln
— Methodneval_jHtprod_nln(nlp)
Get the number of jHtprod
evaluations.
MPCC.neval_jacG
— Methodneval_jacG(nlp)
Get the number of jacG
evaluations.
MPCC.neval_jacG_lin
— Methodneval_jacG_lin(nlp)
Get the number of jacG
evaluations.
MPCC.neval_jacG_nln
— Methodneval_jacG_nln(nlp)
Get the number of jacG
evaluations.
MPCC.neval_jacH
— Methodneval_jacH(nlp)
Get the number of jacH
evaluations.
MPCC.neval_jacH_lin
— Methodneval_jacH_lin(nlp)
Get the number of jacH
evaluations.
MPCC.neval_jacH_nln
— Methodneval_jacH_nln(nlp)
Get the number of jacH
evaluations.
MPCC.viol!
— Methodc = viol!(nlp, x, c)
Return the vector of the constraints
lx <= x <= ux
lc <= c(x) <= uc,
lccG <= G(x),
lccH <= H(x),
G(x) .* H(x) <= 0
MPCC.viol
— Methodc = viol(nlp, x)
Evaluate $c(x)$, the constraints at x
.
MPCC.viol
— MethodReturn the violation of the constraints lb <= x <= ub, lc <= c(x) <= uc, lccG <= G(x), lccH <= H(x), G(x).*H(x) <= 0.